COHERENCE SELECTION

Steps in NMR experiments:

- 1. Coherence generation
- 2. Coherence transfer and/or mixing
 - through-bond coherence transfer

COSY-type TOCSY

- through-space magnetisation transfer
- heteronuclear coherence transfer
- 3. Coherence selection
 - via phase cycling
 - via pulsed field gradient
- 4. Acquisition

COHERENCE SELECTION

ultimate goal: to generate the wanted observable

achieved by: the evolution of the density operator in time

the problem: via multiple pulses and delays we produce several different coherences

among them some are wanted some aren't

the solution: one has to select the desired, and only the desired coherence transfer pathway

the answer: - phase cycling

action: repeating the pulse sequence several times but varying

the relative phase of selected pulses

selection: co-adding the signals

- pulsed field gradient

action: activation of a field gradient at selected points in the

pulse sequence

selection: in situe

COHERENCE-LEVELS

memo. 1.: in coherence level diagram the relaxation is ignored (as in POF)

memo. 2.: two spin system -> possible spin states : $\alpha\alpha$

αβ βα

ββ

single-quantum coherence $\Delta m = \pm 1$ one spin state is changing e.g. $\alpha\alpha - \alpha\beta$ double-quantum coherence $\Delta m = \pm 2$ two spin states are changing e.g. $\alpha\alpha - \beta\beta$

zero-quantum coherence $\Delta m = 0$ two spins states are changing

but the spins flip in opposite sense e.g. $\beta\alpha - \alpha\beta$

memo 3.: longitudinal (z) magnetisation was a zero-quantum coherence

$p = \Delta m$ is the order of the coherence

property: abs (p)
$$\leq$$
 number of spins (e.g. I and S $-2 \leq p \leq +2$)

zero-quantum coherence and z-magnetisation have coherence level 0 single-quantum coherence has coherence level ±1 double-quantum coherence has coherence level ±2

the density operator,
$$\sigma$$
, is: $\sigma = \sum_{i=-p_{max}}^{p_{max}} \sigma_i$

where σ_i is the component of the overall density op. associated with the i-th coherence level. (p_{max} is the maximum possible coh. level e.g. for a three spin system, AMX, $p_{max}=3$)

memo. 4.: a real spin system such as Leu (A₃B₃MPTX) has 2p+1 -> 21 possible coh. levels.

rules: 1. rf. pulses can induce the coherence to be transferred from one level into another

(from a given level [if this is not the thermal equ.] into all other available levels)

2. free-precession conserves the coherence-order.

practical notations for complex signal quadrature detection:

- coherence transfer pathway starts at p = 0 and ends at p = -1
- from thermal equ. (effect of the first pulse) coherence order ± 1 is created only

Only the double-quant coherence are to be retained and the pathways of coh. level +1, 0, -1 during the second delay should be discarded.

comment 1.: a $90^{\circ} \pm k\pi$ (k = 0,1,2,...) pulse produces from any coherence order all possible coherence orders {from coh. order i -> p, (p-1), ...,0,...-(p-1), -p and -p \le i \le +p}

comment 2.: a $180^{\circ} \pm k\pi$ (k = 0,1,2,...) pulse produces from coherence order i -> only -i {from coh. order i -> -i where -p \leq i \leq +p}

COHERENCE SELECTION via PHASE CYCLING:

Transverse magnetisation (single-quant. coh. between two nuclear angular-momentum states) induces voltage in the detection coil. The detected signal oscillates in time.

Lets consider the vector model.

The phase is the relative position of this vector at $t_{acqu.}$ =0 .

Receiver phase constant, and the phase of the 90°_{X} is incremented by -90°. *comment*: adding the signals of the four experiments no spectrum is resulted in.

Receiver phase is incremented by 90° , and the phase of the 90° is a constant x. *comment*: adding the signals of the four experiments no spectrum is resulted in.

Both the receiver phase and the phase of the $90^{\rm O}_{\rm X}$ are incremented by -90°. comment: adding the signals of the four experiments: "+a spectrum" obtained with intensity 4

who to select the coherence transfer path?

Due to a pulse coherence order changes for i to k : $\Delta p = i - k$. If the phase of this pulse is changed by ϕ , then the acquired phase shift is $-\Delta p \phi$

e.g. if
$$i=+1$$
 and $k=+3$ than change in coh. order (Δp) is $+1$ - $(+3)=-2$ and the acquired phase shift is -(-2) $\phi=+2\phi$

who to select between the two following pathways

Pulse phase (\$\phi\$)	Δp	-Δp φ	equi. cycle	rec. phase	spectrum	
	(-1-[p])	$(0^{\circ} \le \le 360^{\circ})$) set to		
double qunat. coh. $p = +2$						
0	-3	0	0	0	+a	
90	-3	270	270	270	+a	
180	-3	540	180	180	+a	
270	-3	810	90	90	+a	
double qunat. coh. $p = -2$						
0	+1	0	0	0	+a	
90	+1	-90	270	270	+a	
180	+1	-180	180	180	+a	
270	+1	-270	90	90	+a	
zero qunat. coh. $p = 0$						
0	-1	0	0	0	+a	
90	-1	90	90	270	-a	
180	-1	180	180	180	+a	
270	-1	270	270	90	-a	

After the four steps p = +2 and p = -2 result in 4*(+a), but with the **same** receiver phase coadding the four spectra of p = 0 the result: 2*(+a) + 2*(-a) = 0

The *Bodenhausen* representation is based on which Δp do pass and which don't. {Here $\Delta p = -3$ and +1 passed: so -3 (-2) (-1) (0) +1 (+2) (+3)}

comment 1.:

In an N step phase cycle (the value of $360^{\rm O}/{\rm N}$ is incremented), with the Δp pathway also Δm pathways are selected, where $\Delta m = \Delta p \pm k N$ (k = 1,2,3,...)

{e.g. N = 4
$$[90^{\circ} \text{ increments}]$$
 and Δp = -3 then Δm = -3 ± k4 (k = 1,2,3,..)

so
$$\Delta m =, -7, -3, +1, +5, +9, ...$$

comment 2.: the selection of Δp among r possible values requires at least an r step phase cycling.

Pulse phase (\$\phi\$)	Δp	-Δp φ	equi. cycle	rec. phase	spectrum	
	(-1-[p])		$(0^{\circ} \le \le 360^{\circ})$ set to			
double qunat. coh. $p = +2$						
0	-3	0	0	0	+a	
60	-3	180	180	300	+120 d	
120	-3	360	0	240	+240 d	
180	-3	540	180	180	+a	
240	-3	720	0	120	+120 d	
300	-3	900	180	60	-120d (or 240d)	
double qunat. coh. $p = -2$						
0	+1	0	0	0	+a	
60	+1	-60	300	300	+a	
120	+1	-120	240	240	+a	
180	+1	-180	180	180	+a	
240	+1	-240	120	120	+a	
300	+1	-300	60	60	+a	

J. Keeler type vector diagram for the above:

After the six steps $\Delta p = +1$ result is 6*(+a).

But with the **same** receiver phase co-adding the six spectra of $\Delta p = -3$ the result is 0. (The result of the six vectors are 0.)

So with the present phase cycle we have retained $\Delta p = +1$ and eliminated $\Delta p = -3$. (In fact we have retained $\Delta m = +1 \pm k6$ (k = 1,2,3,...), so **-5, +1, +7** etc. are retained .)

Practical aspects:

In theory - each pulse must have a specific phase cycle

- each phase cycle are to be executed independently.

In practice appropriate pulses and delays are grouped and considered to be phase

cycled together.

In reality: - the first 90° is not phase cycled (it produces only $\Delta p=\pm 1$)

- the last pulse is not phase cycled (only p = -1 is observed)

for spin 1/2 N coupled spins are required to produce N-quant. coh.

- phase cycling against coh. order > N is unnecessary (for proton -5 < coh. ord. <+5 is to be considered only.)

e.g.

aim: to select only the overall pathway $\Delta p = 0$.

ideally: independent 4 step phase cycle for the first and for the second pulse -> a total

of 16 steps are required.

grouping: grouping the two 90° s and the intervening delay into one, a 4 step phase cycle

may provide enough selectivity.

Pulse phase (φ)	Δp	-Δp φ	equi. cycle	rec. phase	spectrum		
			(00≤≤36	$(0^{\circ} \le \le 360^{\circ})$ kept on			
0	0	0	0	0	+a		
90	0	0	0	0	+a		
180	0	0	0	0	+a		
270	0	0	0	0	+a		

CYCLOPS: compensate quadrature immages

in quadrature detect. two identical channels are used (relative phase shift 90°)

quadrature glitch: artefacts by the diff. between the dc (direct current) baseline offset in chan. 1 and chan. 2

quadrature image: diff sensitivity of the two channels

the quadrature image

The answer is a 2 step CYCLOPS

memo: a 4 step CYCLOPS (0, 90, 180, 270) also removes signal from DC.

EXORCYCLE: compensate imperfect 1800

Pulse phase (\$)	Δp	-Δρ φ	equi. cycle	rec. phase	spectrum	
	(-1- [p])		$(0^{\circ} \le \le 360^{\circ})$ set to			
single qunat. coh. $p = +1$						
0	-2	0	0	0	+a	
90	-2	180	180	180	+a	
180	-2	360	0	0	+a	
270	-2	540	180	180	+a	
single qunat. coh. $p = -1$						
0	+2	0	0	0	+a	
90	+2	-180	180	180	+a	
180	+2	-360	0	0	+a	
270	+2	-540	180	180	+a	
zero qunat. coh. $\Delta p = 0$						
0	0	0	0	0	+a	
90	0	0	0	180	-a	
180	0	0	0	0	+a	
270	0	0	0	180	-a	

We have retained -6, -2, +2, +6 etc.

 $\Delta p = 0$ (unrefocused magnetisation)

 $\Delta p = \pm 1$ (coherence transfer proc.) are eliminated.

Axial peak suppression:

during free precession (t_1 , Δ , $\tau_{mix.}$) magnetisation relax toward equ. conclusion : before ACQ, we have a peak at F_1 = 0

answer : phase cycling the pulse before : t_1 , Δ , $\tau_{mix.}$ etc. common procedure: phase cycling the first pulse (2 step.)

memo: 2D-NOESY (32 step phase cycle) 4*2*4 {NOESY * axial peak[$\tau_{mix.}$]*CYCLOPS} 2D-COSY (8 step phase cycle) 2*4 { axial peak[t_{1}] *CYCLOPS} 2D-DQFCOSY (32 step phase cycle) 4*2*4 {DQ * axial peak[$\tau_{mix.}$]*CYCLOPS}

limitations: difference method

sensitive toward changes - pulse amplitude

- phase changes of a pulse

- field-frequency

- temperature

- lock frequency

lengthy: full relaxation should be obtained (rd.)

B_o is made inhomogeneous, which dephase or refocuse previously dephsed coherence. (A dephasing and refocusing pulse pair is a gradient echo.)

principle: the coherence dephasing (ϕ) is proportional to $-\gamma$ (gyromagnetic ratios) -p (coherence order)

prev. tech. problem: - the field gradient influenced the "lock".

- the field gradient caused large eddy currents

answer: active shielding

The effect of the gradient pulse: spatially (z) dependent phase is made from a uniform phase

The gradient produces an "extra" magnetic field : $B_g(z)$

$$\begin{array}{ll} B_g(z) = z \; G_Z & \text{where} & G_Z := \text{grad. strength (T/m or G/cm)} \\ z := z \; \text{"type" distance} \end{array}$$

$$\begin{split} B_{eff} &= B_o + B_g(z) \\ \text{the Larmor frequ. vary as function of } z \\ \omega\left(z\right) &= \text{-} \; \gamma \left[B_O + B_g(z)\right] = \text{-} \; \gamma \left[B_O + z \; G_Z\right] = \omega_O \text{-} \; \gamma z G_Z \end{split}$$

comment: in the rotating frame the frequency is γzG_z after time t the spatial dephasing $[\phi(z)]$ is $\gamma zG_z t$

Lets consider an in-phase single quant. coh. $(I_X) \rightarrow M_X(t) \approx I_X(t)$

Then the variation of the bulk magnetisation M_x (t)

- with no gradient:

$$I_X$$
 -- $I_Z(t)$ --> $cos(t) I_X + sin(t) I_V$

the net x magnetisation across the whole sample:

$$M_x(t) = \frac{1}{r_{\text{max}}} \sum_{-r_{\text{max}}/2}^{r_{\text{max}}/2} \cos(t) dz = \cos(t)$$

- with gradient:

$$I_X$$
 --{- $\gamma zG_Z tI_Z$ }--> $cos(\gamma zG_Z t) I_X + sin(\gamma zG_Z t) I_V$

net x magnetisation across the whole sample:

$$M_{x}(t) = \frac{1}{r_{\text{max}}} \sum_{-r_{\text{max}}/2}^{r_{\text{max}}/2} \cos(\gamma z G_{z} t) dz = \frac{2 \sin(\gamma G_{z} t \frac{r_{\text{max}}}{2})}{\gamma G_{z} t r_{\text{max}}} = \sin c(\gamma G_{z} t \frac{r_{\text{max}}}{2})$$

Conclusion: $-M_x$ decay in an oscillating mode

- stronger gradient induces a faster decay

- decay is faster for a nuclei with higher gyromagnetic ratio

approximation: if t is long enough then the hyperbolic approximation holds:

$$M_x(t) = \frac{1}{\gamma G_z t \frac{r_{\text{max}}}{2}} = \frac{2}{\gamma G_z t r_{\text{max}}}$$

e.g. If a suppression of a 1 H is of interest ($\gamma = 2.6752 \text{ E} + 8 \text{ T}^{-1} \text{s}^{-1}$) in normal protein NMR sample $r_{\text{max}} \approx 3.25 \text{cm} [0.0325 \text{m}]$ using a gradient G_{Z} (30G/cm [0.3T/m])

if suppression is 0.1% of the orig. value -> 1E-3 = 2/[(3.25E-2*3E-1*2.6752E+8)*t] t= 0.77 ms

As mentioned previously the coh. dephasing (ϕ) is proportional to $-\gamma$ (gyromagnetic ratios) -p (coh. order)

 $\phi(\mathbf{r},t) = s B_g(\mathbf{r})t \Sigma p_i \gamma_i$

 $p_i\gamma_i$ gyromagnetic ratios and coh. level of nuclear species i the gradient produces magnetic field : $B_g(r)$ s is the shape factor of the gradient pulse.

memo: grad. pulse is not rectangular pulse (at t=0 the slop is $\infty ->$ large eddy currents physical damage of the coil)

2t

who to select the coherence transfer path?

A gradient echo is generated for the desired coherence transfer pathway. The overall phase change for the selected coh. tran. pathway should be zero:

$$(\phi_i + \phi_k = 0).$$
 to select to unselect
$$+2 = -1$$

$$-1 = -2$$

$$\begin{array}{l} \phi_i = s_1 \ p_i \ B_{g1} t_1 \\ \phi_k = s_2 \ p_k \ B_{g2} t_2 \end{array}$$

$$\begin{array}{lll} \text{if} & p_i = +2 \text{ and } p_k = -1, & [s_1 \! = \! s_2 \text{ and } B_{g1} \! = \! B_{g2}] \\ \text{then from} & (+2)^* t_1 \! + \! (-1)^* t_2 \! = \! 0 & -\! > t_2 = 2 t_1 \end{array}$$

2t

e.g.
$$-I_y ---(\pi I_x) --> +I_y$$
 (spin echo)

The first gradient dephases and the second rephases (same sign, same strength) effect of the +z gradient (τ) 180° +z gradient (τ):

- pulse imperfection eliminated
- transverse magnetisation of a diff. spin is removed

a limitation of pulsed field gradient:

if $p_i --> p_j$ is selected by gradient then the $-p_i --> p_j$ can not be selected. Since both pathways are required (frequency discrimination) the two pathways should be recorded sequentially.