SEQUENTIAL ASSIGNMENT unlabelled proteins (no resolved spin-spin coupling across the peptide bond) required quality of the 2D-spectra for sequential assignment -all coupled \mathbf{H}^N - \mathbf{H}^{α} resonances present (for all residues) look for cross-peaks in the fingerprint region 6.5 ppm $\leq F_2 \leq 10.5$ ppm 2.5 ppm $\leq F_1 \leq 6.0$ ppm spin system identification sequence-specific assignment ## all H^N's present in H₂O pre- TOCSY COSY or gradient COSY (DQF-COSY) RELAY (30 ms $\leq 2\tau \leq 40$ ms) double-RELAY (30 ms $\leq 2\tau \leq 40$ ms) several HOHAHA (15 ms \leq isotropic mixing \leq 80 ms) ### no HN's present in D2O **DQF-COSY** RELAY (30 ms $\leq 2\tau \leq 40$ ms) double-RELAY (30 ms $\leq 2\tau \leq 40$ ms) several HOHAHA (15 ms \leq isotropic mixing \leq 80 ms) typical spin system identification #### N° 1 Typical spin system identification aim: the identification of the spin systems 1. Gly (8 component shape H^N-H^{α}) AMX spin system 2. **Ala and Thr** (4 component shape characteristic H^{α} - H^{β} of Ala 4 component shape characteristic H^{β} - H^{γ} of Thr) intense cross-peaks 3. Val, Ile and Leu (Val and Leu \Rightarrow a common CH shift correlate with two CH₃) (Ile \Rightarrow a common CH shift correlate with a CH₃) 4. **Type -J** -No proton at the γ position (**Ser**, **Cys**, **Asp**, **Asn**, **Trp**, **Phe**, **Tyr**, **His**). -Similar H^N- H^α- H^β spin subsystem since there is no resolved coupling the β-protons and those at position δ or ϵ (if any). -In D₂O COSY the H^{α} - H^{β} spin subsystem is an AMX (8 component shape) - the H^{α} - H^{β} type J depends on χ_1 - the H^{β} - H^{β} type J is constant 5. **Type -U** -Two proton at the γ position coupled with two β protons (Lys, Arg, Met, Gln, Glu and Pro). 6. Type -X cross-peak category between - Unassigned H^N - H^α peaks #### N° 2 Sequence-specific assignment aim: the correlation of the adjacent spin systems problem: no resolvable spin-spin coupling between protons of adjacent residue $\textit{solution:} \ \ \text{in any conformer the} \qquad \ \ d_{\alpha N}(i \ , \ i+1) \ \text{and /or}$ $d_{NN}(i, i+1)$ and /or $d_{\beta N}(i, i+1)$ give NOE signal. NOE intensities depend on the distances distances depend on the torsion angles (conformation) ## SEQUENTIAL ASSIGNMENT based on ¹⁵N strategy # Heteronuclear ¹³C- ¹⁵N NMR experiments Typical arrangement of a the ¹³C- ¹⁵N NMR data axes.