
SEQUENTIAL ASSIGNMENT unlabelled proteins (no resolved spin-spin coupling across the peptide bond)

required quality of the 2D-spectra for sequential assignment

-all coupled \mathbf{H}^N - \mathbf{H}^{α} resonances present (for all residues) look for cross-peaks in the fingerprint region

6.5 ppm $\leq F_2 \leq 10.5$ ppm 2.5 ppm $\leq F_1 \leq 6.0$ ppm

spin system identification

sequence-specific assignment

all H^N's present in H₂O

pre- TOCSY COSY or gradient COSY (DQF-COSY)

RELAY (30 ms $\leq 2\tau \leq 40$ ms)

double-RELAY (30 ms $\leq 2\tau \leq 40$ ms)

several HOHAHA (15 ms \leq isotropic mixing \leq 80 ms)

no HN's present in D2O

DQF-COSY

RELAY (30 ms $\leq 2\tau \leq 40$ ms)

double-RELAY (30 ms $\leq 2\tau \leq 40$ ms)

several HOHAHA (15 ms \leq isotropic mixing \leq 80 ms)

typical spin system identification

N° 1 Typical spin system identification

aim: the identification of the spin systems

1. Gly (8 component shape H^N-H^{α}) AMX spin system

2. **Ala and Thr** (4 component shape characteristic H^{α} - H^{β} of Ala 4 component shape characteristic H^{β} - H^{γ} of Thr) intense cross-peaks

3. Val, Ile and Leu (Val and Leu \Rightarrow a common CH shift correlate with two CH₃) (Ile \Rightarrow a common CH shift correlate with a CH₃)

4. **Type -J** -No proton at the γ position (**Ser**, **Cys**, **Asp**, **Asn**, **Trp**, **Phe**, **Tyr**, **His**).

-Similar H^N- H^α- H^β spin subsystem since there is no resolved coupling the β-protons and those at position δ or ϵ (if any).

-In D₂O COSY the H^{α} - H^{β} spin subsystem is an AMX (8 component shape)

- the H^{α} - H^{β} type J depends on χ_1 - the H^{β} - H^{β} type J is constant

5. **Type -U** -Two proton at the γ position coupled with two β protons (Lys, Arg, Met, Gln, Glu and Pro).

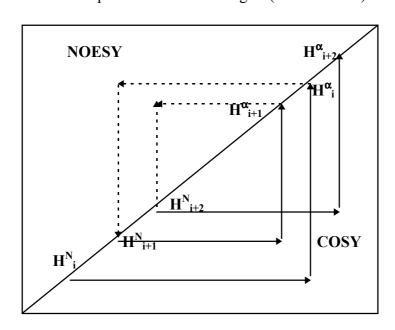
6. Type -X cross-peak category

between

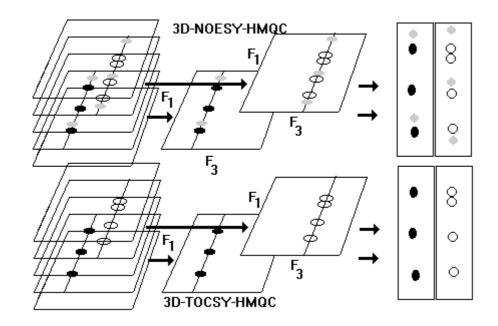
- Unassigned H^N - H^α peaks

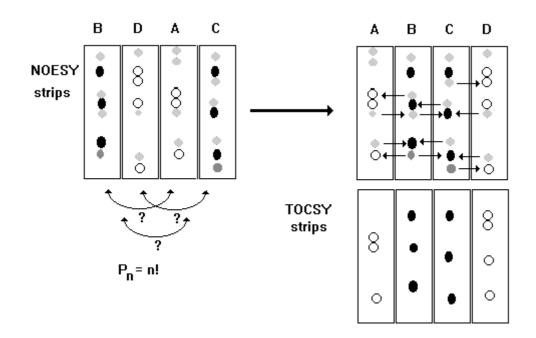
N° 2 Sequence-specific assignment

aim: the correlation of the adjacent spin systems

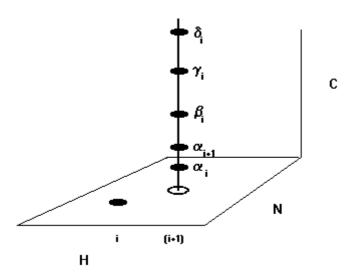

problem: no resolvable spin-spin coupling between protons of adjacent residue

 $\textit{solution:} \ \ \text{in any conformer the} \qquad \ \ d_{\alpha N}(i \ , \ i+1) \ \text{and /or}$


 $d_{NN}(i, i+1)$ and /or


 $d_{\beta N}(i, i+1)$ give NOE signal.

NOE intensities depend on the distances distances depend on the torsion angles (conformation)


SEQUENTIAL ASSIGNMENT based on ¹⁵N strategy

Heteronuclear ¹³C- ¹⁵N NMR experiments

Typical arrangement of a the ¹³C- ¹⁵N NMR data axes.

