DQF-COSY = Double-Quantum Filtered-COrrelated SpectroscopY

The pulse sequence:

$$
90^{\circ}{ }_{\phi}-\mathrm{t}_{1}-90^{\circ}{ }_{\phi}-\tau-90_{\mathrm{x}}^{\circ}-\mathrm{t}_{2}
$$

Consider: $\Omega_{\mathrm{I}}, \Omega_{\mathrm{S}}$ and $\mathrm{J}_{\mathrm{I}, \mathrm{S}}$ $\sigma[$ eq. $]$
$\hat{H}=\pi / 2 \quad\left(\hat{I}_{x}+\check{S}_{x}\right)$
I_{z} and S_{z}
$\downarrow 90^{\circ}{ }_{x}$

$\sigma[0]$
$\hat{H}=\hat{I}_{Z}\left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right)+\check{\mathrm{S}}_{\mathrm{Z}}\left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)$
$-\mathbf{I}_{\mathrm{y}}$ and $-\mathrm{S}_{\mathrm{y}}$
$\downarrow \mathrm{t}_{1}$

$-\mathbf{I}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right)$
$+\mathbf{I}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right)$
$-\mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)$
$\downarrow \quad+\mathbf{S}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)$
$\downarrow \quad$

In DQF-COSY we preserve only double quant. coherences: $\mathbf{I}_{\mathrm{x}} \mathbf{S}_{\mathrm{y}}$ and $\mathbf{S}_{\mathrm{x}} \mathbf{I}_{\mathrm{y}}$ Therefore only two terms remain:

$$
\begin{aligned}
& -2 \mathbf{I}_{\mathrm{x}} \mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right. \\
& -2 \mathbf{S}_{\mathrm{x}} \mathbf{I}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)
\end{aligned}
$$

$$
\sigma\left[\mathrm{t}_{1}, 0\right]
$$

In reality $\mathbf{I}_{\mathrm{x}} \mathbf{S}_{\mathrm{y}}$ and $\mathbf{S}_{\mathrm{x}} \mathbf{I}_{\mathrm{y}}$ are still mixtures of zero-quantum and double-quantum coherences

тето : $\quad \mathrm{I}^{+}=\mathrm{I}_{\mathrm{x}}+\mathrm{iI}_{\mathrm{y}}$

$$
\mathrm{I}^{-}=\mathrm{I}_{\mathrm{x}}-\mathrm{iI}_{\mathrm{y}}
$$

$$
\mathrm{S}^{+}=\mathrm{S}_{\mathrm{x}}+\mathrm{i} \mathrm{~S}_{\mathrm{y}}
$$

$$
S^{-}=S_{x}^{x}-i S_{y}^{y}
$$

consequently: $\quad 1 / 2\left[\mathrm{I}^{+}+\mathrm{I}^{-}\right]=\mathbf{I}_{\mathbf{x}}$ and $1 /(2 \mathrm{i})\left[\mathrm{S}^{+}-\mathrm{S}^{-}\right]=\mathbf{S}_{\mathbf{y}}$

Therefore:

$$
-2 \mathbf{I}_{x} \mathbf{S}_{\mathrm{y}}=-2\left\{1 / 2\left[\mathbf{I}^{+}+\mathrm{I}^{-}\right] 1 /(2 \mathbf{i})\left[\mathbf{S}^{+}-\mathbf{S}^{-}\right]\right\}=-\mathbb{1} /(2 \mathbf{i})\left\{\mathbf{I}^{+} \mathbf{S}^{+}=\mathbf{I}^{+} \mathbf{S}^{-}+\mathbf{I}^{-} \mathbf{S}^{+}=\mathbf{I}^{-} \mathbf{S}^{-}\right\}
$$

only $\mathrm{I}^{+} \mathrm{S}^{+}$and $\mathrm{I}^{-} \mathrm{S}^{-}$are double quant. coh. (or coherence order 2),
$\mathrm{I}^{+} \mathrm{S}^{-}$and $\mathrm{I}^{-} \mathrm{S}^{+}$are zero quant. coh. (or coherence order 0)
In reality via phase cycling the zero quantum coherences are removed and thus only
$-1 /(2 i)\left\{\mathbf{I}^{+} \mathbf{S}^{+}-\mathbf{I}^{-} \mathbf{S}^{-}\right\}$terms remain.

In conclusion term - $\mathbb{1} /(2 \mathbf{i})\left\{\left(\mathbf{I}^{+} \mathbf{S}^{+}\right)-\left(\mathbf{I}^{-} \mathbf{S}^{-}\right)\right\}$is as follows:

$$
\begin{aligned}
& -1 /(2 \mathrm{i})\left[\left\{\left(\mathrm{I}_{\mathrm{x}}+\mathrm{iI}_{\mathrm{y}}\right)\left(\mathrm{S}_{\mathrm{x}}+\mathrm{i} \mathrm{~S}_{\mathrm{y}}\right)\right\}-\left\{\left(\mathrm{I}_{\mathrm{x}}-\mathrm{iI}_{\mathrm{y}}\right)\left(\mathrm{S}_{\mathrm{x}}-\mathrm{i} \mathrm{~S}_{\mathrm{y}}\right)\right\}\right]= \\
& -1 /(2 \mathrm{i})\left[\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{x}}+\mathrm{iI}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}}+\mathrm{iI}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}}-\mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{y}}-\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{x}}+\mathrm{iI}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}}+\mathrm{iI}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}}+\mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{y}}\right] \\
& -1 /(2 \mathrm{i})\left[\mathrm{iI}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}}+\mathrm{iI}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}}+\mathrm{iI}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}}+\mathrm{iI}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}}\right] \\
& -\mathbf{1 / 2}\left[2 \mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}}+2 \mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}}\right]
\end{aligned}
$$

In summary:
$-2 \mathbf{I}_{x} \mathbf{S}_{y} \Rightarrow-1 / 2\left[2 \mathrm{I}_{y} \mathrm{~S}_{\mathrm{x}}+2 \mathrm{I}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right]$ (the 2 true double quant. parts of it)
for the same reason:

$$
-2 \mathbf{S}_{\mathrm{x}} \mathbf{I}_{\mathrm{y}} \Rightarrow-1 / 2\left[2 \mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}}+2 \mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}}\right]
$$

now
$-2 \mathbf{I}_{\mathrm{x}} \mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \Rightarrow-1 / 2\left[2 \mathrm{I}_{\mathrm{y}} \mathrm{S}_{\mathrm{x}}+2 \mathrm{I}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right] \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)$
$-2 \mathbf{S}_{\mathrm{x}} \mathbf{I}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \Rightarrow-1 / 2\left[2 \mathrm{I}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}+2 \mathrm{I}_{\mathrm{y}} \mathrm{S}_{\mathrm{x}}\right] \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)$
τ is set to be short and thus: - no evolution

- no coupling

$$
\begin{aligned}
& -\mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right)-\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right. \\
& -\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)-\mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)
\end{aligned}
$$

$$
\begin{array}{lc}
\hat{\mathrm{H}}=\pi / 2\left(\hat{\mathrm{I}}_{\mathrm{x}}+\check{\mathrm{S}}_{\mathrm{x}}\right) & \downarrow 90^{\circ}{ }_{\mathrm{x}} \\
& -\mathrm{I}_{\mathrm{z}} \mathrm{~S}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)-\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& -\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)-\mathrm{I}_{\mathrm{z}} \mathrm{~S}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)
\end{array}
$$

$$
\begin{array}{ll}
-\mathrm{I}_{\mathrm{z}} \mathrm{~S}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) & -\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{I}}^{\left.\mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)}\right. \\
-\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{I}_{\mathrm{IS}} \mathrm{t}_{1}\right) & -\mathrm{I}_{\mathrm{z}} \mathrm{~S}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}}^{\mathrm{t}_{1}}\right)
\end{array}
$$

During acquisition $\left(\mathrm{t}_{2}\right)$:
$\hat{\mathrm{H}}=\hat{\mathrm{I}}_{\mathrm{Z}}\left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right)+\check{\mathrm{S}}_{\mathrm{z}}\left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right)$ and $2 \hat{\mathrm{I}}_{\mathrm{Z}} \check{S}_{\mathrm{Z}}\left(\mathrm{J}_{\mathrm{IS}} \pi \mathrm{t}_{2}\right) \downarrow \mathrm{t}_{2}$
the $-\mathrm{I}_{\mathrm{x}} \mathrm{S}_{\mathrm{z}}$ term during ACQ $\Rightarrow-\mathbf{I}_{\mathrm{X}} \mathbf{S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right)$

$$
\begin{aligned}
-1 / 2 \mathbf{I}_{\mathrm{y}} \cos & \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& +\mathbf{I}_{\mathrm{y}} \mathbf{S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& -1 / 2 \mathbf{I}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { the }-\mathrm{I}_{\mathrm{z}} \mathrm{~S}_{\mathrm{x}} \text { term during ACQ } \Rightarrow \begin{aligned}
\Rightarrow & -\mathbf{I}_{\mathrm{z}} \mathbf{S}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& -1 / 2 \mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& +\mathbf{I}_{\mathrm{z}} \mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& -1 / 2 \mathbf{S}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { the }-\mathrm{I}_{\mathrm{z}} \mathrm{~S}_{\mathrm{x}} \text { term during ACQ } \Rightarrow-\mathbf{I}_{\mathrm{Z}} \mathbf{S}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& -1 / 2 \mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& +\mathbf{S}_{\mathbf{y}} \mathbf{I}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& -1 / 2 \mathbf{S}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) . d \\
& \text { the }-I_{x} S_{z} \text { term during ACQ } \Rightarrow-\mathbf{I}_{x} \mathbf{S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& -1 / 2 \mathbf{I}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& +\mathbf{S}_{\mathbf{z}} \mathbf{I}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& -1 / 2 \mathbf{I}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \quad \downarrow
\end{aligned}
$$

memo 1: receiver on x
therefore only the four x term remain $-1 / 2 S_{x} \cos \left(\Omega_{S} t_{1}\right) \sin \left(\pi J_{I S} t_{1}\right) \sin \left(\Omega_{S} t_{2}\right) \sin \left(\pi J_{I S} t_{2}\right)$
$-1 / 2 \mathbf{S}_{x} \cos \left(\Omega_{I} t_{1}\right) \sin \left(\pi J_{I S} t_{1}\right) \sin \left(\Omega_{S} t_{2}\right) \sin \left(\pi J_{I S} t_{2}\right)$
$-1 / 2 \mathbf{I}_{x} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right)$
$-1 / 2 \mathbf{I}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right)$
memo 2: $\quad \begin{aligned} & \cos (A) \sin (B)=1 / 2[\sin (A+B)-\sin (A-B)] \\ & \sin (A) \sin (B)=1 / 2[\cos (A-B)-\cos (A+B)]\end{aligned}$
therefore

$$
\begin{aligned}
& +1 / 8 \mathbf{I}_{\mathrm{x}}\left[+\sin \left\{\left(\Omega_{\mathrm{I}}+\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{1}\right\}-\sin \left\{\left(\Omega_{\mathrm{I}}-\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{1}\right\}\right]\left[+\cos \left\{\left(\Omega_{\mathrm{I}}-\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{2}\right\}-\cos \left\{\left(\Omega_{\mathrm{I}}+\pi_{\mathrm{IS}}\right) \mathrm{t}_{2}\right\}\right] \\
& +1 / 8 \mathbf{I}_{\mathrm{x}}\left[+\sin \left\{\left(\Omega_{\mathrm{S}}+\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{1}\right\}-\sin \left\{\left(\Omega_{\mathrm{S}}-\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{1}\right\}\right]\left[+\cos \left\{\left(\Omega_{\mathrm{I}}-\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{2}-\cos \left\{\left(\Omega_{\mathrm{I}}+\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{2}\right\}\right]\right. \\
& +1 / 8 \mathbf{S}_{\mathrm{x}}\left[+\sin \left\{\left(\Omega_{\mathrm{S}}+\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{1}\right\}-\sin \left\{\left(\Omega_{\mathrm{S}}-\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{1}\right\}\right]\left[+\cos \left\{\left(\Omega_{\mathrm{S}}-\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right\}-\cos \left\{\left(\Omega_{\mathrm{S}}+\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{2}\right\}\right]\right. \\
& +1 / 8 \mathbf{S}_{\mathrm{x}}\left[+\sin \left\{\left(\Omega_{\mathrm{I}}+\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right\}-\sin \left\{\left(\Omega_{\mathrm{I}}-\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{1}\right\}\right]\left[+\cos \left\{\left(\Omega_{\mathrm{S}}-\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right\}-\cos \left\{\left(\Omega_{\mathrm{S}}+\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{2}\right\}\right]\right.\right.
\end{aligned}
$$

the following terms can be found

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{x}}[+. .-. .+. .-. .] \text { at } \Omega_{\mathrm{I}}, \Omega_{\mathrm{I}} \\
& \mathbf{I}_{\mathrm{x}}[+. .-. .+. .-. .] \text { at } \Omega_{\mathrm{S}}, \Omega_{\mathrm{I}} \\
& \mathbf{S}_{\mathrm{x}}[+. .-. .+. .-. .] \text { at } \Omega_{\mathrm{S}}, \Omega_{\mathrm{S}} \\
& \mathbf{S}_{\mathrm{x}}[+. .-. .+. .-. .] \text { at } \Omega_{\mathrm{I}}, \Omega_{\mathrm{S}}
\end{aligned}
$$

if one sets the phase that $\quad \sin$ is absorptive (a) in t_{1} cos is absorptive (d) in t_{2}

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{x}}[+\mathrm{a} . .-\mathrm{a} . .+\mathrm{a} . .-\mathrm{a} . .] \text { at } \Omega_{\mathrm{I}}, \Omega_{\mathrm{I}} \\
& \mathbf{I}_{\mathrm{x}}[+\mathrm{a} . .-\mathrm{a} . .+\mathrm{a} . .-\mathrm{a} . .] \text { at } \Omega_{\mathrm{S}}, \Omega_{\mathrm{I}} \\
& \mathbf{S}_{\mathrm{x}}[+\mathrm{a} . .-\mathrm{a} . .+\mathrm{a} . .-\mathrm{a} . .] \text { at } \Omega_{\mathrm{S}}, \Omega_{\mathrm{S}} \\
& \mathbf{S}_{\mathrm{x}}[+\mathrm{a} . .-\mathrm{a} . .+\mathrm{a} . .-\mathrm{a} . .] \text { at } \Omega_{\mathrm{I}}, \Omega_{\mathrm{S}}
\end{aligned}
$$

so the diagonals as well as all off-diagonals have absorptive line shape

memo: line shapes positive absorptive $(+a)$, negative absorptive ($-a$), positive dispersive $(+d)$, negative dispersive ($-d$),

Comment:
The intensity of the DQF-COSY peaks are half of the appropriate COSY peaks (1/8-> 1/4)
Phase cycled DQF-COSY is 4 time longer than the appropriate COSY.
Note: If selection is made not by phase-cycling but by "gradient", then the time requirement of the two experiments are identical.

Summary: ${ }^{1} \mathbf{H}-{ }^{1} \mathbf{H}$ DQF-COSY the raise of an off-diagonal peak

A DQ tagból a zQ tag kiemelését követően:
$-2 \mathbf{S}_{\mathrm{x}} \mathbf{I}_{\mathrm{y}} \Rightarrow-1 / 2\left[2 \mathrm{I}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}+2 \mathrm{I}_{\mathrm{y}} \mathrm{S}_{\mathrm{x}}\right]$

$\sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right)$

DQF-COSY with bipolar

 gradient and -3-9-19:
bipolar gradient is taking care of water during evolution:
a pair of gradients (typically of low power e.g. 0.5%) of increasing length covering the overall time of evolution $\left(\mathrm{t}_{1}\right)$. Radiation dumping is minimized since the otherwise bulk water, as well as any other signals, are dephased and rephased in a symmetric manner during evolution. (No uniform (big) water, no radiation dumping occurs.)
The 180 pulse of DQF (the one between the second and the third 90s):
It is there since a finite ($\mathrm{ms}!$) time is required for the gradient under which time evolution of chemical shift will occur.
This unwanted evolution is eliminated by the refocusing effect of the 180° pulse (see echo)
Two step phase cycling $(0, \pi)$ is required to refocus axial peaks present because of quadrature detection (see phase cycling).

The 3-9-19 watergate or binominal water suppression is to remove water before acquisition
Gradient "a" dephases a double quantum coherence transferred subsequently to a single quantum coherence. When coherence is refocused by the second gradient before acquisition it has to have a length of $2 *$ a.
Gradient "b" is that of the "standard" watergate.

DQF-COSY-bipolar

 gradient and -3-9-19:\uparrow Net magnetization form $\mathrm{H}_{2} \mathrm{O}$ (on resonance)
vo step phase cycling $(0, \pi)$ ith quadrature detection refocos $\underset{\psi}{=} \geq{ }^{2}$ l peaks:

The constructive co-adding of A1 and A2 is possible. The constructive co-adding of B1 and B2 is possible.

