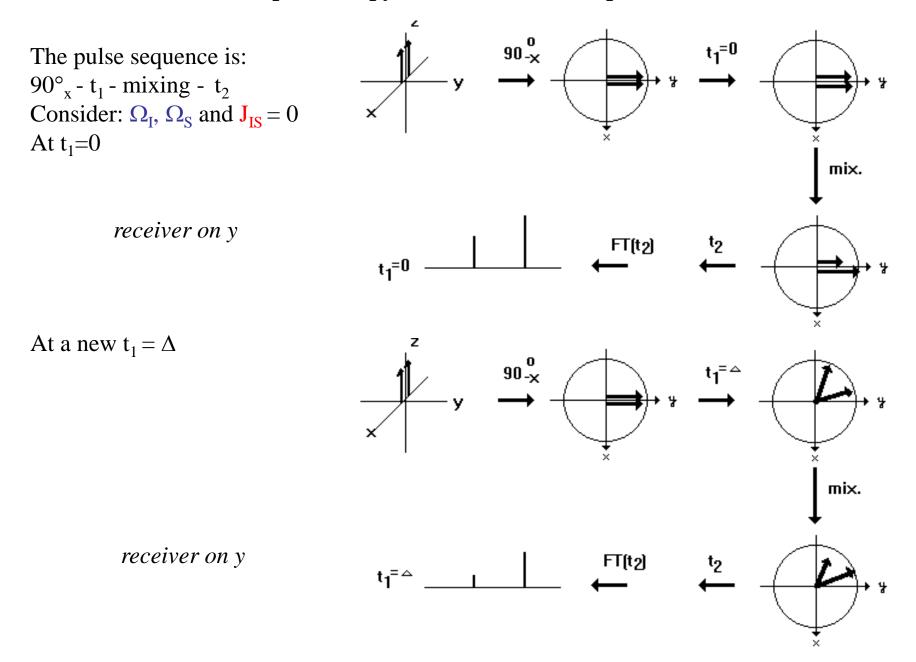
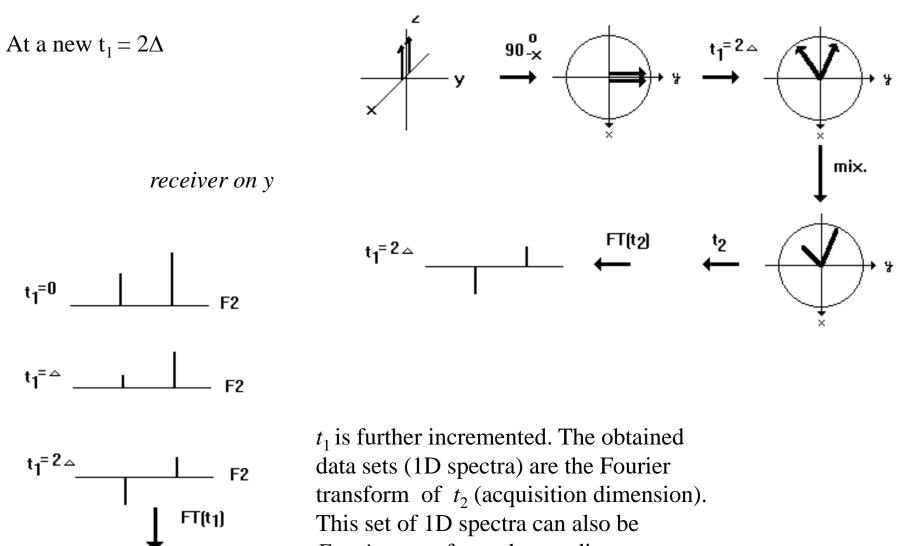
2D spectroscopy via the vector description

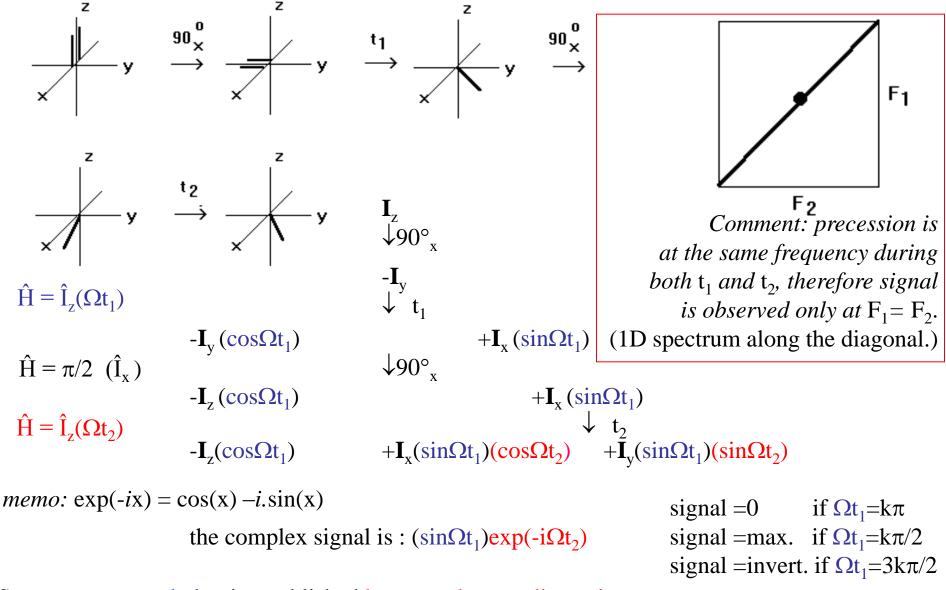




Fourier-transformed according to t_{1} .

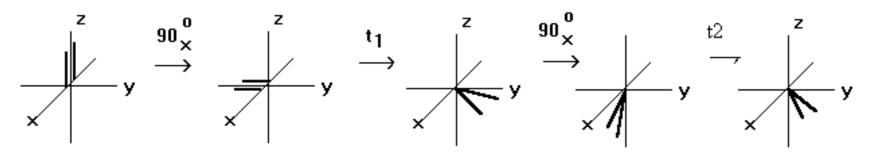
Two Dimensional NMR spectroscopy

A: Consider: $\Omega_{I} = \Omega_{S} = \Omega$ (therefore there is no **J** [or J is infinitely large])



Summary: a correlation is established between the two dimension

B: Consider: $\Omega_{I} \neq \Omega_{S}$ and **J**



$$\hat{H} = \pi/2 \quad (\hat{I}_x) \qquad \begin{array}{c} \mathbf{I}_z \\ \downarrow 90^\circ_x \\ -\mathbf{I}_y \\ \downarrow t_1 \end{array}$$

 $-\mathbf{I}_{v}\cos(\Omega_{I}t_{1})\cos(\pi Jt_{1})$ $+\mathbf{I}_{x}\sin(\Omega_{t_{1}})\cos(\pi Jt_{1})$

 $\hat{H} = \pi/2(\hat{I}_x)$ and $\pi/2(\hat{S}_x)$ $-\mathbf{I}_z \cos(\Omega_I t_1) \cos(\pi J t_1)$ + $\mathbf{I}_{\mathbf{x}} \sin(\Omega_{\mathbf{I}} t_1) \cos(\pi \mathbf{J} t_1)$

 $+2\mathbf{I}_{\mathbf{x}}\mathbf{S}_{\mathbf{z}}\cos(\Omega_{\mathbf{I}}t_{1})\sin(\pi\mathbf{J}t_{1})$ $+2\mathbf{I}_{v}\mathbf{S}_{z}\sin(\Omega_{I}t_{1})\sin(\pi Jt_{1})$

only I type magnetization; (in- and anti-phase)

 $\downarrow 90^{\circ}_{x}$ mixing pulse

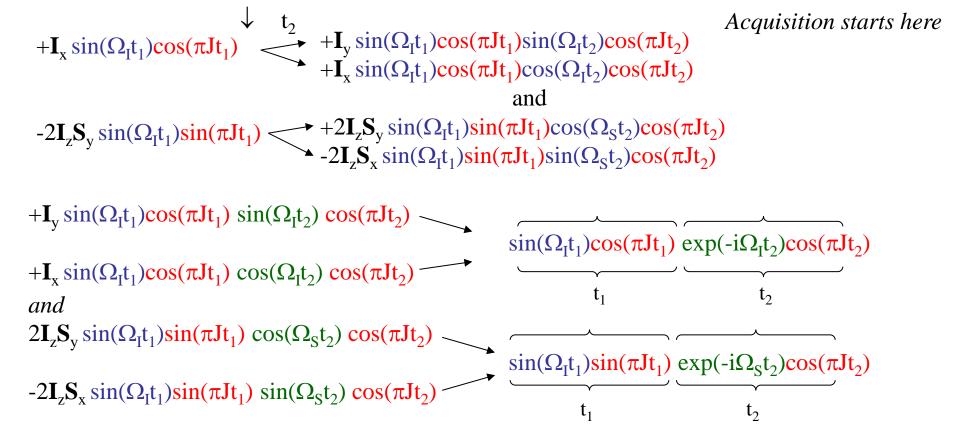
 t_1

 t_2

 $-2\mathbf{I}_{\mathbf{x}}\mathbf{S}_{\mathbf{y}}\cos(\Omega_{\mathbf{I}}\mathbf{t}_{1})\sin(\pi \mathbf{J}\mathbf{t}_{1})$ $-2\mathbf{I}_{z}\mathbf{S}_{v}\sin(\Omega_{I}t_{1})\sin(\pi Jt_{1})$

both I and S type magnetization; (in-phase on I and anti-phase on S)

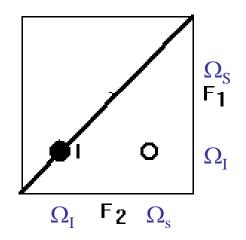
Comment: $I_z(z \text{ magnetization})$ and $I_x S_v(double \text{ quant. coherence})$ will not evolve during Acq to observables, thus we can eliminate both of it



Summary: ignoring multiplet structure ignoring peak shape

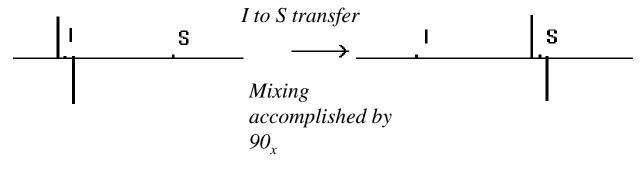
Comment 1: precession is at different frequency during t_1 and t_2 , therefore signals are observed at Ω_I, Ω_I and Ω_I, Ω_S

Conclusion: there is the 1D spectrum along the diagonal (Ω_{I}, Ω_{I}) . There is the off-diagonal element (Ω_{I}, Ω_{S}) .

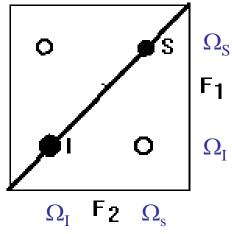


Comment 2: Coherence transfer pathway: magnetization originated on spin I ends on spin I as well as on spin S. The transfer is performed during the mixing period.

Here this is the second 90° pulse, where the $2I_yS_z$ (anti-phased magnetization on spin I) is transferred to $2I_zS_y$ (anti phased magnetization on spin S).



There is an alternative coherence transfer pathway when magnetization originated on spin S ends on spin S as well as on spin I.



Two Dimensional experiments in general

The density operator (σ) is transformed from its initial value (σ [eq.]) to its final stage (σ [t₁,t₂]).

 $\sigma[eq.] \longrightarrow \sigma[0]$ preparation: from equilibrium to non-equilibrium state. in the simplest situation the transverse magnetization is gener.

- $\sigma[0] \longrightarrow \sigma[t_1]$ evolution: the off-diagonal component of the density operator prepared in step 1 is evolving under the Hamiltonian. The Hamiltonian can be free-precession *etc*. The coherence evolves during t_1 resulting in signals detected at frequencies in the F_1 dimension. This is called **F1 frequency labelling** of the coherence.
- $\sigma[t_1] \longrightarrow \sigma[t_1,0]$ *mixing:* coherence is transferred from one spine to another. One can established here the desired type of correlation between the two dimensions.

 $\sigma[t_1,0] \longrightarrow \sigma[t_1,t_2]$ detection (or acquisition): The FID is recorded. If more than one coherence transfer path is possible, then phase cycle or field gradient pulse are used to discriminate.

A: through-bond coherence transfer

migration of coherence between scalar coupled nuclei ---> COSY, RELAY, TOCSY **B: through-space coherence transfer**

dipolar coupled spins change their intensities via nuclear Overhauser effect (NOE) ---> NOESY, ROESY

SENSITIVITY OF AN EXPERIMENT AND THE SIZE OF THE MOLECULE

At a magnetic field (e.g. 500 MHz), for a typical concentration of (*e.g.* 1 mM) certain experiments (e.g. COSY) don't work for large molecules ($M \cong 10$ kDalton) but are efficient for small ones ($M \cong 1$ kDalton). The reason for this is because their T₂ values are different:

 $\begin{array}{ll} M \cong & 1 \text{ kDalton} & \text{typical } \mathbf{T}_2 \cong 1\text{-}2 \text{ s,} \\ M \cong & 10 \text{ kDalton} & \text{typical } \mathbf{T}_2 \cong & 10\text{-}20 \text{ ms.} \end{array}$

The signal intensity (I) goes down according to $I(t) = A^* \exp(-t/T_2)$, therefore their spin-spin relaxation is different.

so at $t = 1T_2 \Rightarrow$ intensity of the signal is $A^*exp(-1) \cong 36.8\%$ so at $t = 2T_2 \Rightarrow$ intensity of the signal is $A^*exp(-2) \cong 13.5\%$ so at $t = 3T_2 \Rightarrow$ intensity of the signal is $A^*exp(-3) \cong 5.0\%$

In homonuclear experiments the ^{1,3}J type-couplings have

a) high conformational dependence,

b) an average value of ~6 Hz,

c) and **builds up** with *sin* or *cos* modulation.

e.g. in COSY the J is cos modulated $\{\cos(\pi J_{IS}t)\}$ in the diagonal peak and J is sin modulated $\{\sin(\pi J_{IS}t)\}$ in the off-diagonal peak.

With J = 6Hz, the I(t) = $\sin(\pi 6t)$ has its maximum at t = 1/(6*2) = 83 ms.

t	relat. signal intensity (%) (decay due to T_2 relax.)	time (ms) (T ₂ = 20)	build up (%) sin modulated J (6Hz)	decay (%) cos modulated J (6Hz)
$1T_2$	36.8	20	36.8	93.0
$2T_2$	13.5	40	68.5	72.9
$3T_2$	5.0	60	90.5	42.6
$4T_2$	2.0	80	99.8	6.2

For a small molecule with $T_2 = 2$ (s) there is practically no decay due T_2 relaxation in the first 100 ms $(A^* \exp(-0.1/2) \approx 95.1\%)$

THEREFORE in a **COSY-type experiments** we observe the following *memo* : $M_x(t_2) = \langle I_x \rangle = Tr \{I_x\sigma\}$ diagonal term $+I_x \sin(\Omega_I t_1)\cos(\pi J_{IS} t_1)\cos(\Omega_I t_2)\cos(\pi J_{IS} t_2)$ off-diagonal term $+I_x \sin(\Omega_S t_1)\sin(\pi J_{IS} t_1)\cos(\Omega_I t_2)\sin(\pi J_{IS} t_2)$ *comment:* so for a mol. with a fast T_2 relaxation (T_2 small, broad linewidth [e.g. protein]) the signal decay is fast while the build up of the sin modulated coupling is slow. In conclusion, the off-diagonal peak **can't be detected**. For the same reason the diagonal is there.

p.s.1. The RELAY is similar to COSY since :

 $\begin{array}{ll} \text{diagonal term} & +\mathbf{I}_{x}\sin(\Omega_{I}t_{1})\cos(\pi J_{IS}t_{1})\cos(\Omega_{I}t_{2})\cos(\pi J_{IS}t_{2}) \\ \text{off-diagonal term} & +\mathbf{I}_{x}\alpha\sin(\Omega_{M}t_{1})\sin(\pi J_{SM}t_{1})\cos(\Omega_{I}t_{2})\sin(\pi J_{IS}t_{2}) \end{array}$

p.s.2. In the DQF-COSY experiment both the diagonal and the off-diagonal could vanish.

 $\begin{array}{ll} \text{diagonal term} & -1/2\mathbf{I}_x \cos(\Omega_I t_1) \sin(\pi J_{IS} t_1) \sin(\Omega_I t_2) \sin(\pi J_{IS} t_2) \\ \text{off-diagonal term} & -1/2\mathbf{I}_x \cos(\Omega_S t_1) \sin(\pi J_{IS} t_1) \sin(\Omega_I t_2) \sin(\pi J_{IS} t_2) \end{array}$