REFERENCING AND CROSS-REFERENCING

Obtaining a spectrum after DFT: - unit for the x axis is the frequency (v),

- unit for the y axis is intensity
$v_{\text {transmitter f. }}=$ rotating frame frequency (carrier frequ., transmitter frequ., zero offset frequ.)
$\nu_{\text {Larmor f. }}=$ Larmor frequency
$v_{\text {audio f. }} \quad=$ audio frequency (size of the off-resonance, the off-set)

How do we get a spectrum? $\quad v_{0}=\omega_{0} / 2 \pi=\gamma B_{0} / 2 \pi$
If γ is constant, characteristic for a nucleus type (e.g. ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ etc)
and B_{0} is also a constant standing for the magnet, then v_{0} should be a single value.
In reality $v_{0}=\omega_{0} / 2 \pi=\left(\mathrm{B}_{0}-\sigma \mathrm{B}_{0}\right) \gamma / 2 \pi$ where σ is the screening or shielding constant. In a different molecular environment the value of σ (a tensor [3×3 matrix]) is different.

Memo: σ is anisotropic ($\left.\sigma_{x x}, \sigma_{x y}, \sigma_{x z}, \sigma_{y x}, \sigma_{y y}, \sigma_{y z}, \sigma_{z x}, \sigma_{z y}, \sigma_{z z}\right)$
In liquids, molecule tumbles (all orientation is assumed) therefore we measure the time average over orientations: this is the isotropic value of $\sigma=\left(\sigma_{x x}, \sigma_{y y}, \sigma_{z z}\right) / 3$, the trace of the tensor.

- paramagnetic term (electronic asymmetry generated by the electric field of neighboring nuclei) for ${ }^{1} \mathrm{H}$ no contribution, for other nuclei the dominant term. Therefore, ${ }^{1} \mathrm{H}$ spectrum smaller than that of other nuclei. - diamagnetic term (electronic shielding of the nucleus) electron donating (or withdrawing) influence of neighboring functional groups
- magnetic anisotropy term (magnetic field generated due to anisotropy of groups) ring current shift originating from aromatic rings, carbonyl group anisotropy shift aldehyde protons
- electric field term (polar group induced electron distribution shift: electron drift, induced asymmetry) Important in ${ }^{19} \mathrm{~F}$ shifts.
- unpaired electron shift term (large magnetic moment of unpaired electron) NMR of metals.
- solvent effects
a) magnetic anisotropy [asymmetric benzene analogues]
b) orientation effects [polar solute polar solvent]
c) solvent solute interaction [H-bonding]

frequency scaling:
problem: the absolute frequency value of a resonance depends on B_{o} solution: the relative frequency scale (δ) doesn't.

$$
\delta=\frac{v-v_{r e f}}{v_{r e f}} * 10^{6}
$$

absolute frequency $\quad 600.001 \mathrm{MHz} \quad 600.000 \mathrm{MHz} \quad 599.997 \mathrm{MHz}$

$$
\delta=\frac{600001000-599997000}{599997000} * 10^{6}(\mathrm{ppm})=\frac{4000}{599.997}(\mathrm{ppm})=6.6667(\mathrm{ppm})
$$

what is a good reference?

- internal reference
- no interaction with the molecule of interest
- single resonance
- known T and pH dependence
- well resolved resonance from the resonances of the mol. of
interest
-external reference
what to use as reference?
- in organic solvent (e.g. CHCl_{3})
- in water
-TMS $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}\right.$ as 0 ppm$]$ as ${ }^{1} \mathrm{HNMR}$ reference
$-\mathrm{TSP}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}^{-} \mathrm{CD}_{2}-\mathrm{CD}_{2}-\mathrm{COO}^{-} \mathrm{Na}^{+}\right.$as 0 ppm$]$
-DSS [as 0 ppm]
example how to use e.g. DSS as an external ref.
\#1 measure a frequency of your mol.
(e.g. the $\mathrm{H}_{2} \mathrm{O}$, the NH of a Trp, etc.)---> 600.001 MHz ,
\#2 take the sample out,
\#3 assume that B_{0} is not changing,
\#4 put the DSS sample in,
\#5 measure the DSS frequency ---> 599.997 MHz ,
\#6 reference the selected frequency as mentioned above.
use this data for cross referencing a NOESY, a TOCSY, a COSY recorded in a raw
repeat the referencing after adjusting
- the pH
- the T
- remeasuring the same sample at a different date.

Cross-referencing ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ via ${ }^{1} \mathrm{H}$
problem: ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ are insensitive to direct observation answer: cross referencing

$$
v_{o}^{X}=v_{o}^{\mathrm{H}} \gamma_{X} / \gamma_{\mathrm{H}}
$$

where $v(\mathrm{~s})$ are the frequency of the nuclei at 0 ppm

reference compound	$\gamma_{\mathrm{C}} / \gamma_{\mathrm{H}}$	$\gamma_{\mathrm{N}} / \gamma_{\mathrm{H}}$
DSS	0.25144952	0.10132905
TMS	0.25145002	0.10132914
TSP	0.25144954	0.10132900

example: if $v_{0}{ }^{H}=500 \mathrm{MHz}$ (established by DSS)

For an ${ }^{15} \mathrm{~N}$ HSQC centred on 120 ppm the required offset:
$120 \mathrm{ppm}=(\mathrm{x}-50.664525) * 10^{6} / 50.664525--->\mathrm{x}=50.664525\left(120 * 10^{-6}+1\right)=$ $=50.6645251 .000120 \mathrm{MHz}=50.670605 \mathrm{MHz}$

For an ${ }^{13} \mathrm{C}$ HSQC centred on 45 ppm the required offset:
$45 \mathrm{ppm}=(\mathrm{x}-125.72476) * 10^{6} / 125.72476--->\mathrm{x}=125.72476\left(45 * 10^{-6}+1\right)=$ $=125.724761 .000045 \mathrm{MHz}=125.730418 \mathrm{MHz}$

The frequency of the water signal at $\mathrm{pH}=5.5$ and 25 C is

$$
\begin{array}{r}
4.7 \mathrm{ppm}=(\mathrm{x}-500) * 10^{6} / 500--->\mathrm{x}=500\left(4.7 * 10^{-6}+1\right)= \\
=500 \quad 1.0000047 \mathrm{MHz}=500.00235 \mathrm{MHz}
\end{array}
$$

