1D- and 2D-building blocks

The coherence transfer pathway of a typical NMR building block.

exp.	coherence transfer	comment
spin-echo	$-I_v => 2I_x S_z$	$J_{IS} > 0$ and $\tau = 1/(4J_{IS})$
	$2I_xS_z => I_y$	
	$-I_v = -I_v$	$J_{IS} = 0$
INEPT	$-I_{\rm v} => 2I_{\rm z}S_{\rm v}$	$J_{IS} > 0$
ref. INEPT	$-I_{v} = -S_{v}$	$J_{IS} > 0$
rev. INEPT	$2I_zS_y = -I_y$	$J_{IS} > 0$
ref. rev. INEPT	$-S_v = -I_v$	$J_{IS} > 0$
COSY	$-I_{v} = -2I_{z}S_{v}\sin(\Omega_{I}t)\sin(\pi J_{IS}t)$	$J_{IS} > 0$ (off diagonal)
TOCSY	$-I_v => S_x$	$J_{IS} = 0$ (off diagonal)
HMQC	$-I_{v} = -I_{v} \cos(\Omega_{s} t)$	$J_{IS} > 0$
HSQC	$-I_y => I_x \cos(\Omega_s t)$	$J_{IS} > 0$
	-	

As homonuclear coupling const. (J_{IS}) is small ≈ 10 Hz, the associated Δ and/or $\tau \approx 1/10$ Hz ≈ 100 ms, a longer delay time As heteronuclear coupling const. (J_{IS}) is large ≈ 100 Hz, the relevant Δ and/or $\tau \approx 1/100$ Hz = 100 Hz.

 $Hz \approx 10$ ms, a rather short time.

e.g.
$$J_{NH} \approx 90$$
 Hz or $J_{CH} \approx 140$ Hz

The simplest but "not too useful" 3D NMR experiment: the COSY-COSY

Homonuclear 3D NMR

Combining two *convenient* 2D experiments (e.g. 2D-COSY)

$$\begin{split} \sigma[eq.] & \mathbf{I}_{z} & \text{AMX (ISM) spin system} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x}) & \downarrow 90^{\circ}_{x} \\ \hat{H} &= \hat{I}_{z}(\Omega_{l}t_{1}) & \downarrow^{-\mathbf{I}_{y}} t_{1} \\ \hat{H} &= 2\hat{I}_{z}\check{S}_{z}(\mathbf{J}_{IS}\pi t_{1}) & \downarrow^{-\mathbf{I}_{y}} \cos(\Omega_{l}t_{1}) + \mathbf{I}_{x}\sin(\Omega_{l}t_{1}) \\ \hat{H} &= 2\hat{I}_{z}\check{S}_{z}(\mathbf{J}_{IS}\pi t_{1}) & \downarrow^{-\mathbf{I}_{y}} \cos(\Omega_{l}t_{1}) + 2\mathbf{I}_{x}S_{z}\cos(\Omega_{l}t_{1})\sin(\pi\mathbf{J}_{IS}t_{1}) \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{S}_{z}) & \downarrow^{90^{\circ}_{x}} \\ \hat{H} &= \pi/2 \ (\hat{I}_{x} + \hat{I}_{x} +$$

The $-2\mathbf{I}_z\mathbf{S}_y$ term is a single quan. S coher. originating from spin I. Thus the evolution of this term is followed: $\hat{\mathbf{H}} = \hat{\mathbf{S}}_z(\Omega_S \mathbf{t}_2)$ $\downarrow \mathbf{t}_2$

 $-2\mathbf{I}_{z}\mathbf{S}_{y}\sin(\Omega_{I}t_{1})\sin(\pi J_{IS}t_{1})\cos(\Omega_{S}t_{2}) + 2\mathbf{I}_{z}\mathbf{S}_{x}\sin(\Omega_{I}t_{1})\sin(\pi J_{IS}t_{1})\sin(\Omega_{S}t_{2})$ \downarrow $\hat{H} = 2\hat{S}_{z}M_{z}(J_{IS}\pi t_{1}) \qquad \qquad \downarrow$

 $-2\mathbf{I}_{z}\mathbf{S}_{y}\sin(\Omega_{I}t_{1})\sin(\pi J_{IS}t_{1})\cos(\Omega_{S}t_{2})\cos(\pi J_{SM}t_{2})$ +4I_zS_xM_zsin(\Omega_{I}t_{1})sin(\Pi J_{IS}t_{1})sin(\Omega_{S}t_{2})sin(\Pi J_{SM}t_{2})

> $+2\mathbf{I}_{z}\mathbf{S}_{x}\sin(\Omega_{I}t_{1})\sin(\pi J_{IS}t_{1})\cos(\Omega_{S}t_{2})\cos(\pi J_{SM}t_{2})$ +4 $\mathbf{I}_{z}\mathbf{S}_{y}\mathbf{M}_{z}\sin(\Omega_{I}t_{1})\sin(\pi J_{IS}t_{1})\sin(\Omega_{S}t_{2})\sin(\pi J_{SM}t_{2})$

 $-2\mathbf{I}_{z}\mathbf{S}_{y}\sin(\Omega_{I}t_{1})\sin(\pi J_{IS}t_{1})\cos(\Omega_{S}t_{2})\cos(\pi J_{SM}t_{2})$ +4 $\mathbf{I}_{z}\mathbf{S}_{x}\mathbf{M}_{z}\sin(\Omega_{I}t_{1})\sin(\pi J_{IS}t_{1})\sin(\Omega_{S}t_{2})\sin(\pi J_{SM}t_{2})$

> +2 $\mathbf{I}_{z}\mathbf{S}_{x}\sin(\Omega_{I}t_{1})\sin(\pi J_{IS}t_{1})\cos(\Omega_{S}t_{2})\cos(\pi J_{SM}t_{2})$ +4 $\mathbf{I}_{z}\mathbf{S}_{y}\mathbf{M}_{z}\sin(\Omega_{I}t_{1})\sin(\pi J_{IS}t_{1})\sin(\Omega_{S}t_{2})\sin(\pi J_{SM}t_{2})$

 $\downarrow 90^{\circ}_{x}$

 $-2\mathbf{I}_{z}\mathbf{S}_{z}\sin(\Omega_{I}t_{1})\sin(\pi J_{IS}t_{1})\cos(\Omega_{S}t_{2})\cos(\pi J_{SM}t_{2})$ $-4\mathbf{I}_{z}\mathbf{S}_{x}\mathbf{M}_{y}\sin(\Omega_{I}t_{1})\sin(\pi J_{IS}t_{1})\sin(\Omega_{S}t_{2})\sin(\pi J_{SM}t_{2})$

 $+2\mathbf{I}_{z}\mathbf{S}_{x}\sin(\Omega_{I}t_{1})\sin(\pi J_{IS}t_{1})\cos(\Omega_{S}t_{2})\cos(\pi J_{SM}t_{2})$ $-4\mathbf{I}_{z}\mathbf{S}_{z}M_{y}\sin(\Omega_{I}t_{1})\sin(\pi J_{IS}t_{1})\sin(\Omega_{S}t_{2})\sin(\pi J_{SM}t_{2})$

The $-4I_zS_zM_y$ term is a single quan. M coher. originating from spin I passed trough S. Thus the evolution of this term is followed:

 $-4I_zS_zM_ysin(\Omega_It_1) sin(\pi J_{IS}t_1) sin(\Omega_St_2) sin(\pi J_{SM}t_2)$

During ACQ: $\hat{H} = M_z(\Omega_M t_3) \qquad \qquad \downarrow \quad t_3$ $\hat{H} = 2\hat{S}_z M_z(J_{SM} \pi t_3) \qquad \qquad \downarrow$

 $\hat{H} = \pi/2 (\hat{S}_{x} + M_{x})$

explanation: record at a fix t_1 a "normal" 2D-COSY where -the acquisition dim is t_3 -the freq. lab. period is t_2 increase $t_1 \leftarrow$ | t₁ + n (dw) n=1,2,...k (e.g. k=32) record at this t₁ a "normal" 2D-COSY $f(t_1, t_2, t_3)$ FT in t_2 and t_3 $f(t_1, v_2, v_3)$ v_1 $f(t_{11}, v_2, v_3)$ $f(t_{12}, v_2, v_3)$ $f(t_{13}, \underline{v})$ FT in t₁ $f(v_1, v_2, v_3)$ $f(t_{1k}, v_2)$

 v_3

 v_2

The $f(v_1, v_2, v_3)$ spectrum (e.g. AMX spin system)

1. Diagonal peaks [e.g. $\Omega_A(v_1)$, $\Omega_A(v_2)$, $\Omega_A(v_3)$] along the body diagonal: from lower left-hand to upper right-hand

Comment: unmigrated magnetisation during t_1 , t_2 as well as t_3 *Analogue:* normal 2D-COSY diagonal

2. Cross-diagonal peaks along the cross-diagonal planes:

e.g. $\Omega_{A}(v_{1}), \Omega_{A}(v_{2}), \Omega_{M}(v_{3})$ $v_{1}=v_{2}$

Comment: unmigrated magnetisation during the pulse separating t_1 and t_2 than coherence is transferred during the pulse separating t_2 and t_3 *Analogue:* normal 2D-COSY

e.g.
$$\Omega_{A}(v_{1}), \Omega_{M}(v_{2}), \Omega_{M}(v_{3})$$
 $v_{2}=v_{3}$

Comment: coherence is transferred during the pulse separating t_1 and t_2

than coherence is untransferred during the pulse separating t_2 and t_3 Analogue: normal 2D-COSY

3. Back transfer peaks along the back transfer plane:

e.g.
$$\Omega_A(v_1), \Omega_M(v_2), \Omega_A(v_3)$$
 $v_1 = v_3$

Comment: coherence is transferred during the pulse separating t_1 and t_2 than coherence is back transferred during the pulse separating t_2 and t_3

Analogue: none

3D NOESY-TOCSY

Combining two *convenient* 2D experiments (e.g. 2D-NOESY and a 2D-TOCSY)

 $F_1 \quad -- NOE --> \quad F_2 -- TOCSY --> F_3$

The $f(v_1, v_2, v_3)$ spectrum (e.g. AMX spin system)

1. Diagonal peaks [e.g. $\Omega_A(v_1)$, $\Omega_A(v_2)$, $\Omega_A(v_3)$] along the body diagonal: from lower left-hand to upper right-hand

Comment: unmigrated magnetisation during t_1 , t_2 as well as t_3

Analogue: normal 2D diagonal

2. Cross-diagonal peaks along the cross-diagonal planes:

e.g. $\Omega_{\Delta}(v_1), \Omega_{\Delta}(v_2), \Omega_{M}(v_3)$ $v_1 = v_2$

Comment: unmigrated magnetisation during the pulse separating t_1 and t_2 than coherence is transferred during the pulse separating t_2 and t_3 Analogue: normal 2D-TOCSY

e.g.
$$\Omega_{A}(v_{1}), \Omega_{M}(v_{2}), \Omega_{M}(v_{3})$$
 $v_{2}=v_{3}$

Comment: coherence is transferred during the pulse separating t_1 and t_2

than coherence is untransferred during the pulse separating t_2 and t_3 Analogue: normal 2D-TOCSY

3. Back transfer peaks along the back transfer plane:

e.g.
$$\Omega_A(v_1), \Omega_M(v_2), \Omega_A(v_3)$$
 $v_1 = v_3$

Comment: coherence is transferred during the pulse separating t_1 and t_2 than coherence is back transferred during the pulse separating t_2 and t_3 *Analogue:* none

Heteronuclear 3D NMR

1. The first $90^\circ =>$ transverse magnetisation

- 2. This is frequency labelled during t_1
- 3. The second $90^\circ \Rightarrow$ longitudinal magnetisation
- 4. During the mixing time => longitudinal magnetisation is transferred via cross-relaxation
- 5. The third $90^\circ \Rightarrow$ transverse magnetisation (end of NOESY part)

 $H_{z}^{A} - 90^{oH} - > H_{y}^{A} - t_{1} - > H_{y}^{A}(\Omega_{A}t_{1}) - 90^{oH} - > H_{z}^{A}(\Omega_{A}t_{1}) - NOE - > H_{z}^{B}(\Omega_{A}t_{1}) - 90^{oH} - > H_{y}^{B}(\Omega_{A}t_{1}) - 90^{oH} - > H_{y}^{B}(\Omega_{A}t_{1}) - 90^{oH} - > H_{y}^{B}(\Omega_{A}t_{1}) - 90^{oH} - > H_{z}^{B}(\Omega_{A}t_{1}) - 90^{oH} -$

6. During the Δ time => anti phase coherence is created ($\Delta_{ideal} = 1/(2*91 \text{ Hz}) \approx 5 \text{ ms}$)

- 7. The fourth 90° (first 90° on N) => generates multiple quantum coherence
- 8. This is frequency labelled during t_2
- 9. The fifth 90° (second 90° on N) => generates from multiple quantum coherence anti phase coherence
- 10. During the second $\Delta =>$ anti phase coherence is refocused to in-phase ¹H magnetisation11. Detected during t_3 (end of HMQC part)

$$\begin{split} H_{y}^{\ B}(\Omega_{A}t_{1}) & -\Delta -> H_{x}^{\ B} \ N_{z}(\Omega_{A}t_{1}) -90^{oN} -> H_{x}^{\ B} \ N_{y}(\Omega_{A}t_{1}) -t_{2} -> H_{x}^{\ B} \ N_{y}(\Omega_{A}t_{1})(\Omega_{N}t_{2}) -90^{oN} -> H_{x}^{\ B} \\ N_{z}(\Omega_{A}t_{1})(\Omega_{N}t_{2}) -\Delta -> H_{y}^{\ B}(\Omega_{A}t_{1})(\Omega_{N}t_{2}) -t_{3} -> H_{y}^{\ B}(\Omega_{A}t_{1})(\Omega_{N}t_{2})(\Omega_{B}t_{3}) \end{split}$$

Summary:

 $H_z^A - 3D$ NOESY-HMQC $- H_y^B(\Omega_A t_1)(\Omega_N t_2)(\Omega_B t_3)$