1D- and 2D-building blocks

The coherence transfer pathway of a typical NMR building block.

exp.	coherence transfer	comment
spin-echo	$-\mathrm{I}_{\mathrm{y}}=>2 \mathrm{I}_{\mathrm{x}} \mathrm{S}_{\mathrm{z}}$	$\mathrm{J}_{\text {IS }}>0$ and $\tau=1 /\left(4 \mathrm{~J}_{\mathrm{IS}}\right)$
	$2 \mathrm{I}_{\mathrm{x}} \mathrm{S}_{\mathrm{z}}=>\mathrm{I}_{\mathrm{y}}$	
	$-\mathrm{I}_{\mathrm{y}}=>-\mathrm{I}_{\mathrm{y}}$	$\mathrm{J}_{\mathrm{IS}}=0$
INEPT	$-\mathrm{I}_{\mathrm{y}}=>2 \mathrm{I}_{\mathrm{z}} \mathrm{S}_{\mathrm{y}}$	$\mathrm{J}_{\text {IS }}>0$
ref. INEPT	$-\mathrm{I}_{\mathrm{y}}=>-\mathrm{S}_{\mathrm{y}}$	$\mathrm{J}_{\text {IS }}>0$
rev. INEPT	$2 \mathrm{I}_{\mathrm{z}} \mathrm{S}_{\mathrm{y}}=>-\mathrm{I}_{\mathrm{y}}$	$\mathrm{J}_{\text {IS }}>0$
ref. rev. INEPT	$-\mathrm{S}_{\mathrm{y}}=>-\mathrm{I}_{\mathrm{y}}$	$\mathrm{J}_{\text {IS }}>0$
COSY	$-\mathrm{I}_{\mathrm{y}}=>-2 \mathrm{I}_{\mathrm{z}} \mathrm{S}_{\mathrm{y}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}\right)$	$\mathrm{J}_{\text {IS }}>0$ (off diagonal)
TOCSY	$-\mathrm{I}_{\mathrm{y}}=>\mathrm{S}_{\mathrm{x}}$	$\mathrm{J}_{\text {IS }}=0$ (off diagonal)
HMQC	$-\mathrm{I}_{\mathrm{y}}=>-\mathrm{I}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{s}} \mathrm{t}\right)$	$\mathrm{J}_{\text {IS }}>0$
HSQC	$-\mathrm{I}_{\mathrm{y}}=>\mathrm{I}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{s}} \mathrm{t}\right)$	$\mathrm{J}_{\mathrm{IS}}>0$

As homonuclear coupling const. $\left(\mathrm{J}_{\mathrm{IS}}\right)$ is small $\approx 10 \mathrm{~Hz}$, the associated Δ and/or $\tau \approx 1 / 10$ $\mathrm{Hz} \approx 100 \mathrm{~ms}$, a longer delay time
As heteronuclear coupling const. $\left(\mathrm{J}_{\mathrm{IS}}\right)$ is large $\approx 100 \mathrm{~Hz}$, the relevant Δ and/or $\tau \approx 1 / 100$ $\mathrm{Hz} \approx 10 \mathrm{~ms}$, a rather short time.

$$
\text { e.g. } \mathrm{J}_{\mathrm{NH}} \approx 90 \mathrm{~Hz} \text { or } \mathrm{J}_{\mathrm{CH}} \approx 140 \mathrm{~Hz}
$$

The simplest but „not too useful" 3D NMR experiment: the COSY-COSY

Homonuclear 3D NMR

Combining two convenient 2D experiments (e.g. 2D-COSY)
2D-COSY

2D-COSY

3D-COSY

σ [eq.]
$\hat{H}=\pi / 2\left(\hat{\mathrm{I}}_{\mathrm{x}}\right)$
$\hat{\mathrm{H}}=\hat{\mathrm{I}}_{\mathrm{Z}}\left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right)$
$\hat{H}=2 \hat{I_{z}} \check{S}_{z}\left(\mathrm{~J}_{I S} \pi \mathrm{t}_{1}\right)$
$\hat{\mathrm{H}}=\pi / 2\left(\hat{\mathrm{I}}_{\mathrm{x}}+\hat{\mathrm{S}}_{z}\right)$

$$
\begin{gathered}
\mathbf{I}_{\mathrm{z}} \\
\downarrow 90^{\circ}{ }_{\mathrm{x}} \\
-\mathbf{I}_{\mathrm{y}} \\
\downarrow \mathrm{t}_{1} \\
-\mathbf{I}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right)+\mathbf{I}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \\
\downarrow \\
-\mathrm{I}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
+2 \mathbf{I}_{\mathrm{x}} \mathbf{S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
+\mathbf{I}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)+2 \mathbf{I}_{\mathrm{y}} \mathbf{S}_{\mathrm{z}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
\downarrow 90^{\circ} \\
-\mathbf{I}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)-2 \mathbf{I}_{\mathrm{x}} \mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
+\mathbf{I}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)-2 \mathbf{I}_{\mathrm{z}} \mathbf{S}_{\mathrm{y}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)
\end{gathered}
$$

The $-2 I_{z} \mathbf{S}_{y}$ term is a single quan. S coher. originating from spin I. Thus the evolution of this term is followed:

$$
\begin{aligned}
& \hat{H}=\hat{\mathrm{S}}_{\mathrm{z}}\left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \quad \downarrow \mathrm{t}_{2} \\
& -2 \mathbf{I}_{\mathrm{z}} \mathbf{S}_{\mathrm{y}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right)+2 \mathbf{I}_{\mathrm{Z}} \mathbf{S}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \\
& \hat{H}=2 \hat{S}_{z} M_{z}\left(\mathrm{~J}_{\text {IS }} \pi \mathrm{t}_{1}\right) \\
& \downarrow \\
& -2 \mathbf{I}_{\mathbf{z}} \mathbf{S}_{\mathrm{y}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{SM}} \mathrm{t}_{2}\right) \\
& +4 \mathrm{I}_{\mathrm{z}} \mathbf{S}_{\mathrm{x}} \mathrm{M}_{\mathrm{z}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{SM}} \mathrm{t}_{2}\right) \\
& +2 \mathbf{I}_{\mathrm{Z}} \mathbf{S}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{SM}} \mathrm{t}_{2}\right) \\
& +4 \mathrm{I}_{\mathrm{Z}} \mathbf{S}_{\mathrm{y}} \mathrm{M}_{\mathrm{Z}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{SM}} \mathrm{t}_{2}\right)
\end{aligned}
$$

The $-4 \mathrm{I}_{z} \mathrm{~S}_{\mathrm{z}} \mathrm{M}_{\mathrm{y}}$ term is a single quan. M coher. originating from spin I passed trough S . Thus the evolution of this term is followed:

$$
-4 \mathrm{I}_{\mathrm{Z}} \mathrm{~S}_{\mathrm{Z}} \mathrm{M}_{\mathrm{y}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{SM}} \mathrm{t}_{2}\right)
$$

During ACQ:
$\hat{H}=M_{z}\left(\Omega_{M} t_{3}\right)$
$\hat{\mathrm{H}}=2 \hat{\mathrm{~S}}_{\mathrm{z}} \mathrm{M}_{\mathrm{z}}\left(\mathrm{J}_{\mathrm{SM}} \pi \mathrm{t}_{3}\right)$

$$
\downarrow \mathrm{t}_{3}
$$

$$
\downarrow
$$

explanation: record at a fix t_{1} a "normal" 2D-COSY where -the acquisition dim is t_{3} -the freq. lab. period is t_{2}
increase t_{1}

$$
\downarrow \mathrm{t}_{1}+\mathrm{n}(\mathrm{dw})
$$

$$
\mathrm{n}=1,2, \ldots \mathrm{k}(\mathrm{e} . \mathrm{g} . \mathrm{k}=32)
$$

record at this t_{1} a "normal" 2D-COSY

FT in t_{2} and t_{3}

The $f\left(v_{1}, v_{2}, v_{3}\right)$ spectrum (e.g. AMX spin system)

1. Diagonal peaks [e.g. $\Omega_{\mathrm{A}}\left(v_{1}\right), \Omega_{\mathrm{A}}\left(v_{2}\right), \Omega_{\mathrm{A}}\left(v_{3}\right)$] along the body diagonal:
from lower left-hand to upper right-hand

Comment: unmigrated magnetisation during $\mathrm{t}_{1}, \mathrm{t}_{2}$ as well as t_{3}
Analogue: normal 2D-COSY diagonal

2. Cross-diagonal peaks along the cross-diagonal planes:

$$
\text { e.g. } \Omega_{\mathrm{A}}\left(v_{1}\right), \Omega_{\mathrm{A}}\left(v_{2}\right), \Omega_{\mathrm{M}}\left(v_{3}\right) \quad v_{1}=v_{2}
$$

Comment: unmigrated magnetisation during the pulse separating t_{1} and t_{2} than coherence is transferred during the pulse separating $t_{\text {, }}$ and t_{3} Analogue: normal 2D-COSY

e.g. $\Omega_{\mathrm{A}}\left(v_{1}\right), \Omega_{\mathrm{M}}\left(v_{2}\right), \Omega_{\mathrm{M}}\left(v_{3}\right)$

$$
v_{2}=v_{3}
$$

Comment: coherence is transferred during the pulse separating t_{1} and t_{2} than coherence is untransferred during the pulse separating t_{2} and t_{3} Analogue: normal 2D-COSY

3. Back transfer peaks along the back transfer plane:

$$
\text { e.g. } \Omega_{\mathrm{A}}\left(v_{1}\right), \Omega_{\mathrm{M}}\left(v_{2}\right), \Omega_{\mathrm{A}}\left(v_{3}\right) \quad v_{1}=v_{3}
$$

Comment: coherence is transferred during the pulse separating t_{1} and t_{2} than coherence is back transferred during the pulse separating t_{2} and t_{3}
Analogue: none

3D NOESY-TOCSY

Combining two convenient 2D experiments (e.g. 2D-NOESY and a 2D-TOCSY)

2D-NOESY

2D-TOCSY

3D-NOESY-TOCSY

explanation: record at a fix t_{1} a "normal" 2D-TOCSY where -the acquisition dim is t_{3}

t_{1}	$\tau_{\text {mix }}$	t_{2}	$\mathbf{S p} \mathbf{p}^{\text {r }}$	t_{3}
F_{1}	OE --		OCSY	\rightarrow

The $f\left(v_{1}, v_{2}, v_{3}\right)$ spectrum (e.g. AMX spin system)

1. Diagonal peaks [e.g. $\Omega_{\mathrm{A}}\left(\mathrm{v}_{1}\right), \Omega_{\mathrm{A}}\left(\mathrm{v}_{2}\right), \Omega_{\mathrm{A}}\left(\mathrm{v}_{3}\right)$] along the body diagonal:
from lower left-hand to upper right-hand
Comment: unmigrated magnetisation during $\mathrm{t}_{1}, \mathrm{t}_{2}$ as well as t_{3}
Analogue: normal 2D diagonal

2. Cross-diagonal peaks along the cross-diagonal planes:

$$
\text { e.g. } \Omega_{\mathrm{A}}\left(\mathrm{v}_{1}\right), \Omega_{\mathrm{A}}\left(\mathrm{v}_{2}\right), \Omega_{\mathrm{M}}\left(\mathrm{v}_{3}\right)
$$

$$
v_{1}=v_{2}
$$

Comment: unmigrated magnetisation during the pulse separating t_{1} and t_{2} than coherence is transferred during the pulse separating t_{2} and t_{3} Analogue: normal 2D-TOCSY
e.g. $\Omega_{\mathrm{A}}\left(v_{1}\right), \Omega_{\mathrm{M}}\left(v_{2}\right), \Omega_{\mathrm{M}}\left(v_{3}\right)$

$$
v_{2}=v_{3}
$$

Comment: coherence is transferred during the pulse separating t_{1} and t_{2} than coherence is untransferred during the pulse separating t_{2} and t_{3} Analogue: normal 2D-TOCSY

3. Back transfer peaks along the back transfer plane:

$$
\text { e.g. } \Omega_{\mathrm{A}}\left(v_{1}\right), \Omega_{\mathrm{M}}\left(v_{2}\right), \Omega_{\mathrm{A}}\left(v_{3}\right) \quad v_{1}=v_{3}
$$

Comment: coherence is transferred during the pulse separating t_{1} and t_{2} than coherence is back transferred during the pulse separating t_{2} and t_{3}
Analogue: none

Heteronuclear 3D NMR

1. The first $90^{\circ}=>$ transverse magnetisation
2. This is frequency labelled during t_{1}
3. The second $90^{\circ}=>$ longitudinal magnetisation
4. During the mixing time $=>$ longitudinal magnetisation is transferred via cross-relaxation
5. The third $90^{\circ}=>$ transverse magnetisation (end of NOESY part)
$H_{z}^{A}--90^{\circ H_{-->}} H_{y}^{A}{ }^{A}-t_{1}-->H_{y}^{A}\left(\Omega_{A} t_{1}\right)--90^{\circ H_{-->}} H_{z}{ }^{A}\left(\Omega_{A} t_{1}\right)--N O E-->H_{z}{ }^{B}\left(\Omega_{A} t_{1}\right)--90^{\circ H_{-->}} H_{y}{ }^{B}\left(\Omega_{A} t_{1}\right)$
6. During the Δ time $=>$ anti phase coherence is created $\left(\Delta_{\text {ideal }}=1 /(2 * 91 \mathrm{~Hz}) \approx 5 \mathrm{~ms}\right)$
7. The fourth 90° (first 90° on N) => generates multiple quantum coherence
8. This is frequency labelled during t_{2}
9. The fifth $90^{\circ}\left(\right.$ second 90° on N$)=>$ generates from multiple quantum coherence anti phase coherence
10. During the second $\Delta=>$ anti phase coherence is refocused to in-phase ${ }^{1} \mathrm{H}$ magnetisation
11. Detected during t_{3}
(end of HMQC part)
$H_{y}{ }^{B}\left(\Omega_{A} t_{1}\right)--\Delta-->H_{x}{ }^{B} N_{z}\left(\Omega_{A} t_{1}\right)--90^{o N_{--}} H_{x}{ }^{B} N_{y}\left(\Omega_{A} t_{1}\right)--t_{2}-->H_{x}{ }^{B} N_{y}\left(\Omega_{A} t_{1}\right)\left(\Omega_{N} t_{2}\right)--90^{o N_{--}} H^{B}{ }^{B}$ $\mathrm{N}_{\mathrm{z}}\left(\Omega_{\mathrm{A}} \mathrm{t}_{1}\right)\left(\Omega_{\mathrm{N}} \mathrm{t}_{2}\right)--\Delta-->\mathrm{H}_{\mathrm{y}}^{\mathrm{B}}\left(\Omega_{\mathrm{A}} \mathrm{t}_{1}\right)\left(\Omega_{\mathrm{N}} \mathrm{t}_{2}\right)--\mathrm{t}_{3}-->\mathrm{H}_{\mathrm{y}}{ }^{\mathrm{B}}\left(\Omega_{\mathrm{A}} \mathrm{t}_{1}\right)\left(\Omega_{\mathrm{N}} \mathrm{t}_{2}\right)\left(\Omega_{\mathrm{B}} \mathrm{t}_{3}\right)$

Summary:

$$
\mathrm{H}_{\mathrm{z}}^{\mathrm{A}}--3 \mathrm{D} \text { NOESY-HMQC --> } \mathrm{H}_{\mathrm{y}}^{\mathrm{B}}\left(\Omega_{\mathrm{A}} \mathrm{t}_{1}\right)\left(\Omega_{\mathrm{N}} \mathrm{t}_{2}\right)\left(\Omega_{\mathrm{B}} \mathrm{t}_{3}\right)
$$

