The 3D-HNCA on a ${ }^{15} \mathrm{~N},-{ }^{13} \mathrm{C}$ labeled sample:

The 3D-HNCA on a ${ }^{15} \mathrm{~N},-{ }^{13} \mathrm{C}$ labeled sample:

What do we get at the end?

The 3D-HNCA

$-2 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{x}} \mathrm{C}_{\mathrm{Z}}{ }^{\alpha(\mathrm{i}-1)} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)$ és

How do we get it?
$-2 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{x}} \mathrm{C}_{\mathrm{z}}{ }^{\alpha(\mathrm{i})} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)$

$\mathbf{C}^{\alpha(i-1)} \quad \mathbf{C l}^{\alpha(i)}-2 \mathbf{H}_{y} \mathbf{N}_{\mathrm{x}} \mathrm{C}_{\mathrm{y}}{ }^{\alpha(\mathrm{i})} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)$
és

$$
\begin{aligned}
&-2 \mathbf{H}_{\mathrm{y}} \mathbf{N}_{\mathrm{x}} \mathrm{C}_{\mathrm{y}}{ }^{a(\mathrm{i})} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) \\
& \cos \left(\Omega \mathrm{C}_{a(\mathrm{i}-1)} \mathrm{t}_{2}\right)
\end{aligned}
$$

The 3D-HNCA

How do we get it?

N-coherence is now C-coherence is transferred to $\mathrm{C} \alpha \quad$ back transferred
freq. labeling by Ω_{N} during t_{1}

N -coherence is back transferred now to H

A. module (getting started)

$$
\begin{aligned}
& \sigma[0] \quad \text { "The first INEPT module" } \\
& \hat{\mathrm{H}}=\mathrm{H}_{\mathrm{x}}(\pi / 2) \\
& \hat{\mathrm{H}}=\text { echo (homo) } \\
& \hat{\mathrm{H}}=\mathrm{H}_{\mathrm{y}}(\pi / 2) \\
& \hat{\mathrm{H}}=\mathrm{N}_{\mathrm{x}}(\pi / 2) \\
& \sigma[a] \quad \text { "end of this INEPT" } \\
& \left\{+\mathbf{H}_{\mathbf{y}} \cos \left(\mathrm{J}_{\mathrm{HN}} \tau 2 \tau\right)-2 \mathbf{H}_{\mathrm{x}} \mathbf{N}_{\mathrm{z}} \sin \left(\mathrm{~J}_{\mathrm{HN}} \tau 2 \tau\right) \text { with } 2 \tau=1 / 2 \mathrm{~J}_{\mathrm{HN}}\right\} \\
& -2 \mathbf{H}_{x} \mathbf{N}_{z} \\
& \downarrow \\
& +2 \mathbf{H}_{z} \mathbf{N}_{z} \\
& \downarrow \\
& -2 \mathrm{H}_{\mathrm{z}} \mathrm{~N}_{\mathrm{y}}
\end{aligned}
$$

B. module (frequency labeling by N)
$\sigma[\mathrm{a}] \rightarrow \sigma[\mathrm{b}]$ "frequency labeling" by N^{15}
The echo module decouples N from all the other nuclei (e.g. $\left.\mathrm{H}, \mathrm{C}^{\alpha}, \mathrm{C}^{\prime}\right)$. In other words, all scalar couplings between ${ }^{15} \mathrm{~N}$ and ${ }^{1} \mathrm{H}^{\mathrm{NH}},{ }^{13} \mathrm{Ca}$ and ${ }^{13} \mathrm{CO}$ spins are removed by the 180° refocusing pulses (echo) positioned at the middle of t_{1}.

$\sigma[a] \quad$ "at the beginning of $t_{1} "$ $\hat{\mathrm{H}}=$ echo (hetero) $\sigma[b] \quad$ "at the end of t_{1} "

$$
\downarrow
$$

$$
+2 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)-2 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)
$$ memo: $-2 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)$ is phase cycled out, as it would evolve into a $+4 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{y}} \mathrm{C}_{\mathrm{z}}$ type anti-phase „tri-spin" magnetization.

C. module (transferring coherence from N to $C \alpha(s)$)
$\sigma[\mathrm{b}]$ from the beginning of delay δ term $+2 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)$ is to be considered only memo: during the delay-time δ "all" couplings (${ }^{1} \mathrm{~J}_{\mathrm{HN}},{ }^{1} \mathrm{~J}_{\mathrm{NC}}{ }^{1} \mathrm{~J}_{\mathrm{NC}}{ }^{\alpha} \mathbf{J}_{\mathrm{NC}}{ }^{\alpha}$) are active.

$$
\begin{aligned}
& \hat{\mathrm{H}}=2 \mathrm{H}_{\mathrm{z}} \mathrm{~N}_{\mathrm{z}}\left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) \\
& \underset{\downarrow}{\downarrow}+\mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) \\
& +2 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right)+2 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) \\
& \text { memo 3: If } \delta \text { is set to a value } \mathrm{k} /{ }^{1} \mathrm{~J}_{\mathrm{HN}} \text { (where } \mathrm{k}=1,2, \ldots \text {) } \\
& \text { [1/91, 2/91, etc.] then }{ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta \rightarrow \mathrm{k}^{*} \pi \text { [} 1 \pi, 2 \pi \text {, etc.]. } \\
& \text { As } \sin \left(\mathrm{k}^{*} \pi\right)=0 \text {, the }+2 \mathbf{H}_{\mathrm{Z}} \mathbf{N}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) \text { term } \\
& \text { must vanishes. } \\
& \text { Thus, }+2 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) \text { is to be considered only: } \\
& \hat{\mathrm{H}}=2 \mathrm{~N}_{\mathrm{z}} \mathrm{C}_{\mathrm{z}}\left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) \\
& +2 \mathbf{H}_{\mathrm{z}} \mathrm{~N}_{\mathrm{y}} \\
& \hat{\mathrm{H}}=2 \mathrm{~N}_{\mathrm{z}} \mathrm{C}_{\mathrm{z}}\left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) \\
& \begin{array}{l}
+2 \mathbf{H}_{z} \mathbf{N}_{\mathrm{y}} \\
\downarrow \\
-4 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{x}} \mathrm{Ca}^{(\mathrm{i}-1)}{ }_{\mathrm{z}}
\end{array} \\
& \begin{array}{l}
-4 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{x}} \mathrm{Ca}^{(\mathrm{i})}{ }_{\mathrm{z}} \\
\downarrow
\end{array} \\
& +2 \mathrm{H}_{\mathrm{z}} \mathrm{~N}_{\mathrm{y}} \\
& +2 \mathrm{H}_{\mathrm{z}} \mathrm{~N}_{\mathrm{y}} \\
& -4 \mathbf{H}_{z} \mathbf{N}_{\mathrm{x}} \mathrm{Ca}^{(\mathrm{i}-1)}{ }_{\mathrm{z}} \\
& -4 \mathbf{H}_{z} \mathrm{~N}_{\mathrm{x}} \mathrm{C} \alpha^{(\mathrm{i})}{ }_{\mathrm{z}} \\
& -8 \mathbf{H}_{z} \mathbf{N}_{\mathrm{y}} \mathbf{C} \alpha^{(\mathrm{i})}{ }_{\mathrm{z}} \mathbf{C} \alpha^{(\mathrm{i}-1)}{ }_{\mathrm{z}} \\
& * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) \quad{ }^{*} \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) \\
& * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) \quad * \sin \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha \alpha^{(\mathrm{i}-1)} \pi \delta\right) \\
& * \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) \quad{ }^{(} \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha{ }^{(\mathrm{i}-1)} \pi \delta\right) \\
& * \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) \quad *_{\sin }\left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) \\
& -8 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{y}} \mathbf{C} \alpha^{(\mathrm{i})}{ }_{\mathrm{z}} \mathbf{C} \alpha^{(\mathrm{i}-1)}{ }_{\mathrm{z}}
\end{aligned}
$$

memo: recall that ${ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \neq{ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)}$ as $10 \neq 7 \mathrm{~Hz}$

question: how to set optimally delay time δ ?
answer: the $\cos \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(i)} \pi \delta\right) * \sin \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right)$ and the $\sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right)$ terms are called as the "transfer" functions; terms to be maximized.

Considering that ${ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})}$ and ${ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)}$ are 10 and 7 Hz , respectively (with ${ }^{1} \mathrm{~J}_{\mathrm{NH}}=91 \mathrm{~Hz}$) both transfer functions have a maximum at $\delta \sim$ 22 ms .

So one can now set δ at a sensible value ($\sim 22 \mathrm{~ms}$) for globular proteins. memo: in addition, if $\delta \sim 22 \mathrm{~ms}$, then $\cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) \sim \cos (2,002 \pi) \sim 1$.

10 Hz
${ }^{1} \mathrm{~J}_{\mathrm{NC}}$ refocused with the 180° suite centered in the middle of t_{2} (or more typically it is decoupled)

The two "transfer" functions, f_{1} and f_{2}, as function of the delay-time (δ)

The two "transfer" functions, $f_{1} \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right)$ and $f_{2} \cos \left({ }^{\left(1 \mathrm{~J}_{\mathrm{NH}}\right.} \pi \delta\right)$ as function of the delay-time (δ)

$$
f_{1}(\delta)=\cos \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) \sin \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right)
$$

One can set δ at a sensible value

$$
f_{2}(\delta)=\sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha \alpha^{(\mathrm{i}-1)} \pi \delta\right) \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right)
$$ ($\sim 22 \mathrm{~ms}$) for globular proteins.

memo 4: - since ${ }^{1} \mathrm{~J}_{\mathrm{NC}}{ }^{(\mathrm{i})}$ and ${ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)}$ couplings are different, they do not cancel out,

- the anti-phase two spin $\left(+2 \mathbf{H}_{z} \mathbf{N}_{y}\right)$ and four-spin $\left(-8 \mathbf{H}_{z} \mathbf{N}_{y} \mathrm{C} \alpha(\mathrm{i})_{z} \mathrm{C} \alpha(\mathrm{i}-1)_{z}\right)$ terms are removed by phase cycling during the next 90° on C (of phase $\varphi 3$).
Thus, the two 3-spin terms of interest are as follows:

$$
\begin{aligned}
& -4 \mathbf{H}_{\mathrm{Z}} \mathbf{N}_{\mathrm{x}} \mathrm{C} \alpha^{(\mathrm{i}-1)}{ }_{\mathrm{z}} \quad * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) \quad * \sin \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) \quad * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) \\
& -4 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{x}} \mathrm{C} \alpha^{(\mathrm{i})}{ }_{\mathrm{z}} \quad * \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) \quad * \cos \left({ }^{(2} \mathrm{J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) \quad * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)
\end{aligned}
$$

D. module (generating multiple-quantum coherences)

$\sigma[\mathbf{c}]$	$-4 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{x}} \mathrm{C}_{\mathrm{z}}$
$\hat{\mathrm{H}}=\mathrm{H}_{\mathrm{x}}(\pi / 2)$	\downarrow
$\hat{\mathrm{H}}=\mathrm{C} \alpha_{\mathrm{x}}(\pi / 2)$	$+4 \mathbf{H}_{\mathrm{y}} \mathbf{N}_{\mathrm{x}} \mathrm{C}_{\mathrm{z}}$
	\downarrow
	$-4 \mathbf{H}_{\mathrm{y}} \mathbf{N}_{\mathrm{x}} \mathrm{C}_{\mathrm{y}}$

$\sigma[\mathbf{d}] \quad-4 \mathbf{H}_{\mathrm{y}} \mathbf{N}_{\mathrm{x}} \mathrm{C}^{(\mathrm{i}-1)}{ }_{\mathrm{y}} * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \sin \left({ }^{(2} \mathrm{J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)$

$$
-4 \mathbf{H}_{\mathrm{y}} \mathbf{N}_{\mathrm{x}} \mathrm{C}{ }^{(\mathrm{i})}{ }_{\mathrm{y}} * \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)
$$

E. module (frequency labeling by $C \alpha(s)$)
$\sigma[\mathbf{d}] \quad$ at the beginning of $\mathrm{t}_{2} "$
$-4 \mathbf{H}_{\mathrm{y}} \mathbf{N}_{\mathrm{x}} \mathrm{C} \alpha^{(\mathrm{i}-1)}{ }_{\mathrm{y}} * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \sin \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)$ $-4 \mathbf{H}_{\mathrm{y}} \mathbf{N}_{\mathrm{x}} \mathrm{C} \alpha^{(\mathrm{i})}{ }_{\mathrm{y}} * \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)$
$\hat{\mathrm{H}}=$ echo (hetero) $\hat{\mathrm{H}}=\mathrm{C}_{\mathrm{z}}\left(\Omega_{\mathrm{C} \alpha}\left[\mathrm{t}_{2}\right]\right) \quad \downarrow$
at the end of t_{2}

$-4 \mathbf{H}_{\mathrm{y}} \mathbf{N}_{\mathrm{x}} \mathrm{C} \alpha^{(\mathrm{i}-1)} \mathrm{y} * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \sin \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) * \cos \left(\Omega_{\mathrm{C}} \alpha^{(\mathrm{i}-1)} \mathbf{t}_{2}\right)$
$-4 \mathbf{H}_{\mathrm{y}} \mathbf{N}_{\mathrm{x}} \mathrm{C} \alpha^{(\mathrm{i})}{ }_{\mathrm{y}}{ }^{2} \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) * \cos \left(\Omega_{\mathrm{C}} \alpha^{(\mathrm{i})} \mathrm{t}_{2}\right)$
memo: Both of the two 3 -spin terms contain the $\boldsymbol{\operatorname { s i n }}\left(\Omega_{\mathrm{C}} \alpha^{(\mathbf{i - 1})} \mathbf{t}_{2}\right)$ modulation (not shown above) were phase cycled out ($\varphi 2$).
memo: 180° applied on both ${ }^{1} \mathrm{H}$ and ${ }^{15} \mathrm{~N}$ refocuses their chemical shifts (echo), and thus the evolution of $\mathbf{H}_{y} \mathbf{N}_{\mathrm{x}} \mathbf{C} \alpha_{\mathrm{y}}$ term depends only on the chemical shift of $\mathrm{C} \alpha$, therefore the effective $\hat{\mathrm{H}}=\mathrm{C}_{\mathrm{z}}\left(\Omega_{\mathrm{C} \alpha}\left[\mathrm{t}_{2}\right]\right)$.

Note however, that because the ${ }^{1} \mathrm{~J}_{\mathrm{CaC} \mathrm{\beta}}$ copling is active during t_{2}, the $\cos \left({ }^{1} \mathrm{~J}_{\mathrm{C} \alpha \mathrm{C} \mathrm{\beta}} \pi \mathrm{t}_{2}\right)$ modulation is effective, at the end of t_{2}. Thus, at $\sigma[\mathrm{e}]$ is:

```
\(-4 \mathbf{H}_{\mathrm{y}} \mathbf{N}_{\mathrm{x}} \mathrm{C} \alpha^{(\mathrm{i}-1)}{ }_{\mathrm{y}} * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \sin \left({ }^{\left(\mathrm{J}_{\mathrm{NC}}\right.} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) * \cos \left(\Omega_{\mathrm{C}} \alpha^{(\mathrm{i}-1)} \mathrm{t}_{2}\right)\)
\({ }^{*} \cos \left({ }^{1} \mathrm{~J}_{\mathrm{C}} \alpha_{C} \beta \pi \mathrm{t}_{2}\right)\)
\(-4 \mathbf{H}_{\mathrm{y}} \mathbf{N}_{\mathrm{x}} \mathrm{C} \alpha^{(\mathrm{i})}{ }_{\mathrm{y}} * \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) * \cos \left(\Omega_{\mathrm{C}} \alpha^{(\mathrm{i})} \mathrm{t}_{2}\right)\)
\({ }^{*} \cos \left({ }^{1} \mathrm{~J}_{\mathrm{C}} \alpha_{\mathrm{C}} \beta \pi \mathrm{t}_{2}\right)\)
```

F. module (back transforming the multiple-quantum coherences to an anti-phase coherence on N)

$\sigma[\mathbf{e}]$	$-4 \mathbf{H}_{y} \mathbf{N}_{\mathrm{x}} \mathrm{C}_{\mathrm{y}}$
$\hat{\mathrm{H}}=\mathrm{H}_{\mathrm{x}}(\pi / 2)$	\downarrow
$\hat{\mathrm{H}}=\mathrm{C} \alpha_{\mathrm{x}}(\pi / 2)$	$+4 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{x}} \mathrm{C}_{\mathrm{y}}$
	\downarrow
	$-4 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{x}} \mathrm{C}_{\mathrm{z}}$

$\sigma[\mathbf{f}]$
$-4 \mathbf{H}_{\mathbf{z}} \mathbf{N}_{\mathbf{x}} \mathbf{C} \alpha^{(\mathrm{i}-1)} \mathbf{z}_{\mathbf{z}} * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \sin \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) * \cos \left(\Omega_{\mathrm{C}} \alpha^{(\mathrm{i}-1)} \mathrm{t}_{2}\right)$
$*^{\cos }\left({ }^{1} \mathrm{~J}_{C} \alpha_{C} \beta \pi \mathrm{t}_{2}\right)$
$-4 \mathbf{H}_{\mathbf{z}} \mathbf{N}_{\mathbf{x}} \mathbf{C} \alpha^{(\mathbf{i})}{ }_{\mathbf{z}} * \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) * \cos \left(\Omega_{\mathrm{C}} \alpha^{(\mathrm{i})} \mathrm{t}_{2}\right)$
${ }^{*} \cos \left({ }^{1} \mathrm{~J}_{\mathrm{C}} \alpha_{\mathrm{C}} \beta \pi \mathrm{t}_{2}\right)$
G. module (back transferring coherence from $C \alpha(s)$ to N during the second delay-time δ)
$\sigma[\mathbf{f}]$
$\hat{\mathrm{H}}=2 \mathrm{~N}_{\mathrm{z}} \mathrm{C}_{\mathrm{z}}\left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right)$
$\hat{H}=2 \mathrm{~N}_{\mathrm{z}} \mathrm{C}_{\mathrm{z}}\left(\mathrm{J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right)$
\square

memo : The reverse INEPT pulses (as it is the terminating module of this pulse sequence) has to result in observable magnetization, thus among the 4 terms:
$-4 \mathbf{H}_{\mathbf{z}} \mathbf{N}_{\mathbf{x}} \mathbf{C} \alpha^{(\mathrm{i})}{ }_{\mathbf{z}} \rightarrow-4 \mathbf{H}_{\mathbf{y}} \mathbf{N}_{\mathbf{x}} \mathbf{C} \alpha^{(\mathrm{i})}{ }_{\mathbf{z}} \quad$ is a multiple-quantum coh. \rightarrow not observable
$+4 \mathbf{H}_{\mathbf{z}} \mathbf{N}_{\mathbf{x}} \mathrm{Ca}^{(\mathrm{i-i})}{ }_{\mathrm{z}} \rightarrow+4 \mathbf{H}_{\mathbf{y}} \mathrm{N}_{\mathbf{x}} \mathrm{Ca}^{(\mathrm{i}-1)} \quad$ is amultiple-quantum coh. \rightarrow not observable $-8 \mathbf{H}_{\mathbf{z}} \mathbf{N}_{\mathbf{y}} \mathbf{C} \alpha^{(\mathrm{i})}{ }_{\mathbf{z}} \mathbf{C} \alpha^{(\mathrm{i}-1)}{ }_{\mathbf{z}} \rightarrow-4 \mathbf{H}_{\mathbf{x}} \mathbf{C} \alpha^{(\mathrm{i})} \mathbf{z}_{\mathbf{z}} \mathbf{C} \alpha^{(\mathrm{i}-1)}{ }_{\mathbf{z}} \quad$ is an anti-phase coh. \rightarrow observable but ignored, as it is modulated by unwanted proton-carbon couplings: ${ }^{2} \mathrm{~J}_{\mathrm{HC}} \alpha^{(\mathrm{i})}$ and ${ }^{3} \mathrm{~J}_{\mathrm{HC}} \alpha^{(\mathrm{i})}$
$\mathbf{- 2} \mathrm{H}_{\mathrm{z}} \mathrm{N}_{\mathrm{y}} \rightarrow-\mathrm{H}_{\mathrm{x}}$ the only important term to be considered

Therefore from: $\sigma[\mathbf{f}]$
$-4 \mathbf{H}_{\mathbf{z}} \mathbf{N}_{\mathbf{x}} \mathbf{C} \alpha^{(\mathrm{i}-1)}{ }_{\mathbf{z}} * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \sin \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) * \cos \left(\Omega_{\mathrm{C}} \alpha^{(\mathrm{i}-1)} \mathrm{t}_{2}\right)$ ${ }^{*} \cos \left({ }^{1} \mathrm{~J}_{\mathrm{C}} \alpha_{\mathrm{C}} \beta \pi \mathrm{t}_{2}\right)$
$-4 \mathbf{H}_{\mathbf{z}} \mathbf{N}_{\mathbf{x}} \mathbf{C} \alpha^{(\mathbf{i})}{ }_{\mathbf{z}} * \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) * \cos \left(\Omega_{\mathrm{C}} \alpha^{(\mathrm{i})} \mathrm{t}_{2}\right)$
${ }^{*} \cos \left({ }^{1} \mathrm{~J}_{\mathrm{C}} \alpha_{\mathrm{C}} \beta \pi \mathrm{t}_{2}\right)$
one gets the following two terms:
$\sigma[\mathrm{g}]$
$-2 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{y}}{ }^{* \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right)}{ }^{*} \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \sin \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right)$
$* \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) * \cos \left(\Omega_{C}{ }^{(\mathrm{i}-1)} \mathrm{t}_{2}\right) * \cos \left({ }^{1} \mathrm{~J}_{C} \alpha_{C} \beta \pi \mathrm{t}_{2}\right)$
$-2 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{y}} * \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right)$
$* \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) * \cos \left(\Omega_{\mathrm{C}} \alpha^{(\mathrm{i})} t_{2}\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{C}} \alpha_{\mathrm{C}} \beta \pi \mathrm{t}_{2}\right)$

```
\sigma[g]
-2\mp@subsup{\mathbf{H}}{2}{}\mp@subsup{\mathbf{N}}{\mathbf{y}}{*}*\operatorname{sin}(\mp@subsup{}{}{(1)}\mp@subsup{\textrm{J}}{\textrm{NC}}{}\mp@subsup{\alpha}{}{(i)}\pi\delta)*\operatorname{cos}(\mp@subsup{}{}{2}\mp@subsup{\textrm{J}}{\textrm{NC}}{}\mp@subsup{\alpha}{}{(i-1)}\pi\delta)*\operatorname{cos}(\mp@subsup{}{}{(1)}\mp@subsup{\textrm{J}}{\textrm{NC}}{}\mp@subsup{\alpha}{}{(i)}\pi\delta)*\operatorname{sin}(\mp@subsup{}{}{2}\mp@subsup{\textrm{J}}{\textrm{NC}}{}\mp@subsup{\alpha}{}{(i-1)}\pi\delta)*\mp@subsup{\operatorname{cos}}{}{2}(\mp@subsup{}{}{(}\mp@subsup{\textrm{J}}{\textrm{NH}}{}\pi\delta)
*}\operatorname{cos}(\mp@subsup{\Omega}{N}{}\mp@subsup{t}{1}{})*\operatorname{cos}(\mp@subsup{\Omega}{C}{}\mp@subsup{\alpha}{}{(i-1)}\mp@subsup{t}{2}{})*\operatorname{cos}(\mp@subsup{}{}{1}\mp@subsup{J}{C}{}\mp@subsup{\alpha}{C}{}\beta\pi\mp@subsup{t}{2}{}
```



```
*}\operatorname{cos}(\mp@subsup{\Omega}{N}{}\mp@subsup{\textrm{t}}{1}{})*\operatorname{cos}(\mp@subsup{\Omega}{C}{}\mp@subsup{\alpha}{}{(i)}\mp@subsup{t}{2}{})*\operatorname{cos}(\mp@subsup{}{}{1}\mp@subsup{J}{C}{}\mp@subsup{\alpha}{C}{}\beta\pi\mp@subsup{t}{2}{}
```


H. module (finishing with a reverse INEPT)

$$
\left\{-\mathbf{H}_{\mathrm{x}} \sin \left(\mathrm{~J}_{\mathrm{HN}} \pi 2 \tau\right)+2 \mathbf{H}_{\mathrm{y}} \mathbf{N}_{\mathrm{z}} \cos \left(\mathrm{~J}_{\mathrm{HN}} \pi 2 \tau\right) \text { with } 2 \tau=1 / 2 \mathrm{~J}_{\mathrm{HN}}\right\}
$$

$\sigma[\mathbf{h}] \quad$,at the end, before acquisition $\left(\mathrm{t}_{3}\right)$ starts,,: $-\mathbf{H}_{\mathrm{x}}$
Note that this final observable in-phased - H_{x} coherence (or transverse magnetization) is modulated as follows:

```
-H
*}\operatorname{cos}(\mp@subsup{\Omega}{\textrm{N}}{}\mp@subsup{\textrm{t}}{1}{})*\operatorname{cos}(\mp@subsup{\Omega}{\textrm{C}}{}\mp@subsup{\alpha}{}{(i-1)}\mp@subsup{\textrm{t}}{2}{})*\operatorname{cos}(\mp@subsup{}{}{1}\mp@subsup{\textrm{J}}{\textrm{C}}{}\mp@subsup{\alpha}{C}{}\beta\pi\mp@subsup{\textrm{t}}{2}{}
-H
*}\operatorname{cos}(\mp@subsup{\Omega}{N}{}\mp@subsup{\textrm{t}}{1}{})*\operatorname{cos}(\mp@subsup{\Omega}{C}{}\mp@subsup{\alpha}{}{(\textrm{i}}\mp@subsup{t}{2}{})*\operatorname{cos}(\mp@subsup{}{}{1}\mp@subsup{\textrm{J}}{\textrm{C}}{}\mp@subsup{\alpha}{C}{}\beta\pi\mp@subsup{t}{2}{}
```


ACQ:

As no coupling is effective during acquisition

$$
\begin{aligned}
& \hat{\mathrm{H}}=\mathrm{H}_{\mathrm{z}}\left(\Omega_{\mathrm{H}}\left[\mathrm{t}_{3}\right]\right) \\
& \text { memo : put the receiver on }-\mathrm{x} \\
& \begin{array}{ll}
-\mathbf{H}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{H}} \mathrm{t}_{3}\right)+ \\
\text { therefore only the single } \mathrm{x} \text { term remains: } & -\mathbf{H}_{\mathrm{y}} \sin \left(\Omega_{\mathrm{H}} \mathrm{t}_{3}\right) \\
\text { the following term can be found } & +\mathbf{H}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{H}} \mathrm{t}_{3}\right) \\
\mathbf{H}_{\mathrm{x}}[+] \text { at } \Omega_{\mathrm{H}}, \Omega_{\mathrm{N}}, \Omega_{\mathrm{C}} \alpha
\end{array}
\end{aligned}
$$

if one sets the phase that cos is absorptive in all three dimensions $\left(\mathrm{t}_{3}, \mathrm{t}_{2}, \mathrm{t}_{1}\right)$, then:

$$
\begin{aligned}
& \mathbf{H}_{\mathrm{x}}[+\mathrm{a}] \text { at } \Omega_{\mathrm{H}}, \Omega_{\mathrm{N}}, \Omega_{\mathrm{C}} \alpha^{(\mathrm{i}-1)} \\
& \mathbf{H}_{\mathrm{x}}[+\mathrm{a}] \text { at } \Omega_{\mathrm{H}}, \Omega_{\mathrm{N}}, \Omega_{\mathrm{C}} \alpha^{(\mathrm{i})}
\end{aligned}
$$

$$
-\mathbf{H}_{\mathrm{x}} * \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \sin \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos ^{2}\left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right)
$$

$$
* \cos \left({ }^{1} \mathrm{~J}_{\mathrm{C}} \alpha_{\mathrm{C}} \beta \pi \mathrm{t}_{2}\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) * \cos \left(\Omega_{\mathrm{C}} \alpha^{(\mathrm{i}-1)} \mathrm{t}_{2}\right) * \cos \left(\Omega_{\mathrm{H}} \mathrm{t}_{3}\right)
$$

$$
-\mathbf{H}_{\mathrm{x}} * \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \sin \left({ }^{1} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i})} \pi \delta\right) * \cos \left({ }^{2} \mathrm{~J}_{\mathrm{NC}} \alpha^{(\mathrm{i}-1)} \pi \delta\right) * \cos ^{2}\left({ }^{1} \mathrm{~J}_{\mathrm{NH}} \pi \delta\right)
$$

$$
* \hat{\cos }\left({ }^{1} \mathrm{~J}_{\mathrm{C}} \alpha_{\mathrm{C}} \beta \pi \mathrm{t}_{2}\right) * \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right) * \cos \left(\Omega_{\mathrm{C}} \alpha^{(\mathrm{i})} \mathrm{t}_{2}\right) * \cos \left(\Omega_{\mathrm{H}} \mathrm{t}_{3}\right)
$$

In summary:

$$
{ }_{\text {és }} \text { en }_{\mathrm{z}} \mathbf{N}_{\mathrm{x}} \mathrm{C}_{\mathrm{z}}{ }^{\alpha(i-1)} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)
$$

$$
-2 \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)^{-2 \mathbf{H}_{\mathrm{Z}} \mathbf{N}_{\mathrm{x}} \mathrm{C}_{\mathrm{z}}{ }^{\alpha(\mathrm{i})} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)}
$$

A constant-time HNCA (CT-HNCA)variant pulse sequence:

More HNCA variant pulse sequences:

Decoupled-CT-HNCA synchronous broad band decoupling (e.g. WALTZ-16) enhances the sensitivity of a CT-HNCA.

PFG-PEP-HNCA at the end the reversed-INEPT module is replaced by a PEP-revesed-INEPT.

PFG-TROSY-HNCA
evolution of ${ }^{15} \mathrm{~N}$ and
the coherence transfer from N to $\mathrm{C} \alpha(\mathrm{s})$ are separated in time
evolution of ${ }^{15} \mathrm{~N}$ and
the coherence transfer from N to $\mathrm{C} \alpha(\mathrm{s})$ are simultaneous
advantage: one saves time with the CT- experiment. memo: by saving time one may gain in sensitivity as relaxation is reduced.

The simplest triple resonance experiments used for backbone resonance assignment

Experiment	Correlations observed	Magnetization transfer	J couplings ${ }^{b}$
HNCA	$\begin{aligned} & { }^{1} \mathrm{H}_{i}^{\mathrm{N}}-{ }^{15} \mathrm{~N}_{i}-{ }^{13} \mathrm{C}_{i}^{\alpha} \\ & { }^{1} \mathrm{H}_{i}^{\mathrm{N}}-{ }^{15} \mathrm{~N}_{i}-{ }^{13} \mathrm{C}_{i-1}^{\alpha} \end{aligned}$		$\begin{aligned} & { }^{1} J_{\mathrm{NH}} \\ & { }^{1} J_{\mathrm{NC}}{ }^{\alpha} \\ & { }^{2} J_{\mathrm{NC}^{\alpha}} \end{aligned}$
$\mathrm{HN}(\mathrm{CO}) \mathrm{CA}$	${ }^{1} \mathrm{H}_{i}^{\mathrm{N}}-{ }^{15} \mathrm{~N}_{i}-{ }^{13} \mathrm{C}_{i-1}^{\alpha}$		$\begin{aligned} & { }^{1} J_{\mathrm{NH}} \\ & { }^{1} J_{\mathrm{NCO}} \\ & { }^{1} J_{\mathrm{C}^{a} \mathrm{CO}} \end{aligned}$
$\mathrm{H}(\mathrm{CA}) \mathrm{NH}$	$\begin{aligned} & { }^{1} \mathrm{H}_{i}^{\alpha}-{ }^{15} \mathrm{~N}_{i}-{ }^{1} \mathrm{H}_{i}^{\mathrm{N}} \\ & { }^{1} \mathrm{H}_{i}^{\alpha}-{ }^{15} \mathrm{~N}_{i+1}-{ }^{1} \mathrm{H}_{i+1}^{\mathrm{N}} \end{aligned}$		$\begin{aligned} & { }^{1} J_{\mathrm{C}^{a} \mathrm{H}^{\alpha}} \\ & { }^{1} J_{\mathrm{NC}^{a}} \\ & { }^{2} J_{\mathrm{NC}^{a}} \\ & { }^{1} J_{\mathrm{NH}} \end{aligned}$
CBCANH	$\begin{aligned} & { }^{13} \mathrm{C}_{i}^{\beta} /{ }^{13} \mathrm{C}_{i}^{\alpha}-{ }^{15} \mathrm{~N}_{i}-{ }^{1} \mathrm{H}_{i}^{\mathrm{N}} \\ & { }^{13} \mathrm{C}_{i}^{\beta} /{ }^{13} \mathrm{C}_{i}^{\alpha}-{ }^{15} \mathrm{~N}_{i+1}-{ }^{1} \mathrm{H}_{i+1}^{\mathrm{N}} \end{aligned}$		$\begin{aligned} & { }^{1} J_{\mathrm{CH}} \\ & { }^{1} J_{\mathrm{C}^{\alpha} \mathrm{C}^{\beta}} \\ & { }^{1} J_{\mathrm{NC}^{a}} \\ & { }^{2} J_{\mathrm{NC}^{a}} \\ & { }^{1} J_{\mathrm{NH}} \end{aligned}$
HNCACB	$\begin{aligned} & { }^{13} \mathrm{C}_{i}^{\beta} /{ }^{13} \mathrm{C}_{i}^{\alpha}-{ }^{15} \mathrm{~N}_{i}-{ }^{1} \mathrm{H}_{i}^{\mathrm{N}} \\ & { }^{13} \mathrm{C}_{i-1}^{\beta} /{ }^{13} \mathrm{C}_{i-1}^{\alpha}-{ }^{15} \mathrm{~N}_{i}-{ }^{1} \mathrm{H}_{i}^{\mathrm{N}} \end{aligned}$		$\begin{aligned} & { }^{1} J_{\mathrm{C}^{\alpha} \mathrm{C}^{\beta}} \\ & { }^{1} J_{\mathrm{NC}^{a}} \\ & { }^{2} J_{\mathrm{NC}^{a}} \\ & { }^{1} J_{\mathrm{NH}} \end{aligned}$

Resonance assignment in ${ }^{15} \mathrm{~N}-{ }^{13} \mathrm{C}$-Calpastatin

$\mathrm{CO}^{(\mathrm{i}-1)}$

HNCA and HN(CO)CA

moman

