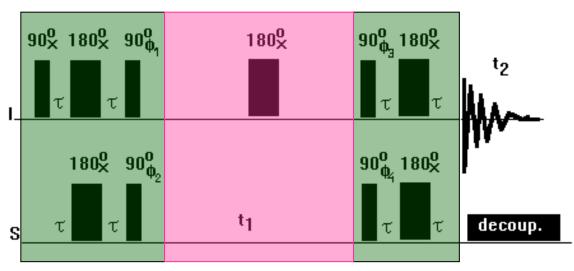
HSQC = Heteronuclear Single-Quantum Coherence

The pulse sequence:

Consider: Ω_{I} , Ω_{S} and J_{IS}

 $\tau = 1/(4J_{IS})$ in order to maximize the coherence transfer from I to S



The overal pulse sequence can be subdivided as follows: **INEPT + echo + INEPT.**

1) The first INEPT is to improve the sensitivity of the low magnetogyric ratio nuclei (¹⁵N, ¹³C).

2) During the defocused delay (echo), t_1 , only Ω_s evolves (coupling is refocused).

 The final INEPT-type unit is to perform inverse detection (observing the frequency of the low magnetogyric ratio nuclei as ¹H magnetization.)

$$\sigma[eq.]$$

$$\hat{H} = \pi/2 (\hat{I}_x)$$

$$\sigma[0]$$

this is a ,,homo" type echo:

$$\hat{H} = \hat{I}_z(\Omega_I \tau) \text{ and } S_z(\Omega_S \tau)$$

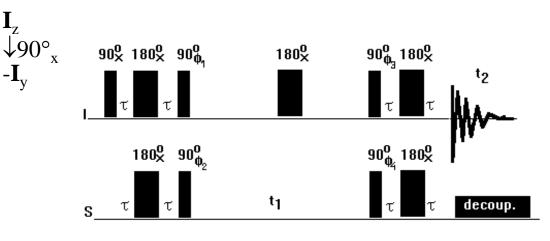
$$\hat{H} = 2\hat{I}_z \check{S}_z(J_{IS} \pi \tau) \qquad |$$

$$\hat{H} = \pi \hat{I}_x \qquad |$$

$$\hat{H} = \pi S_x \qquad |$$

$$\hat{H} = \hat{I}_z(\Omega_I \tau) \text{ and } S_z(\Omega_S \tau)$$

$$\hat{H} = 2\hat{I}_z \check{S}_z(J_{IS} \pi \tau)$$



the chemical shift is refocused but coupling evolves,

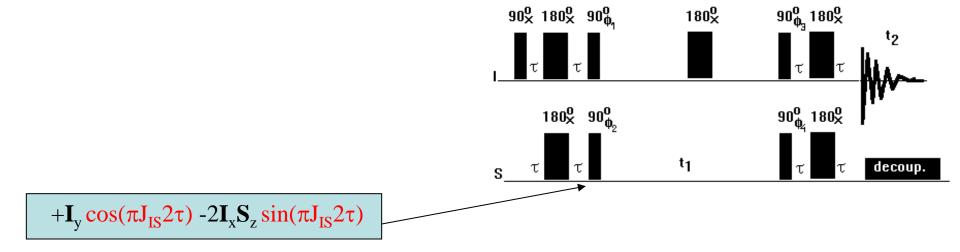
thus the effective \hat{H} is composed of 3 terms: $\hat{H} = 2\hat{I}_z \check{S}_z (J_{IS} \pi 2\tau), \hat{H} = \pi \hat{I}_x$ and $\hat{H} = \pi S_x$

$$\sigma[0] \qquad -\mathbf{I}_{y}$$

$$\hat{H} = 2\hat{I}_{z}\check{S}_{z}(J_{IS}\pi 2\tau) \qquad -\mathbf{I}_{y}\cos(\pi J_{IS}^{2}\tau) + 2\mathbf{I}_{x}S_{z}\sin(\pi J_{IS}^{2}\tau)$$

$$\hat{H} = \pi\hat{I}_{x} \qquad +\mathbf{I}_{y}\cos(\pi J_{IS}^{2}\tau) + 2\mathbf{I}_{x}S_{z}\sin(\pi J_{IS}^{2}\tau)$$

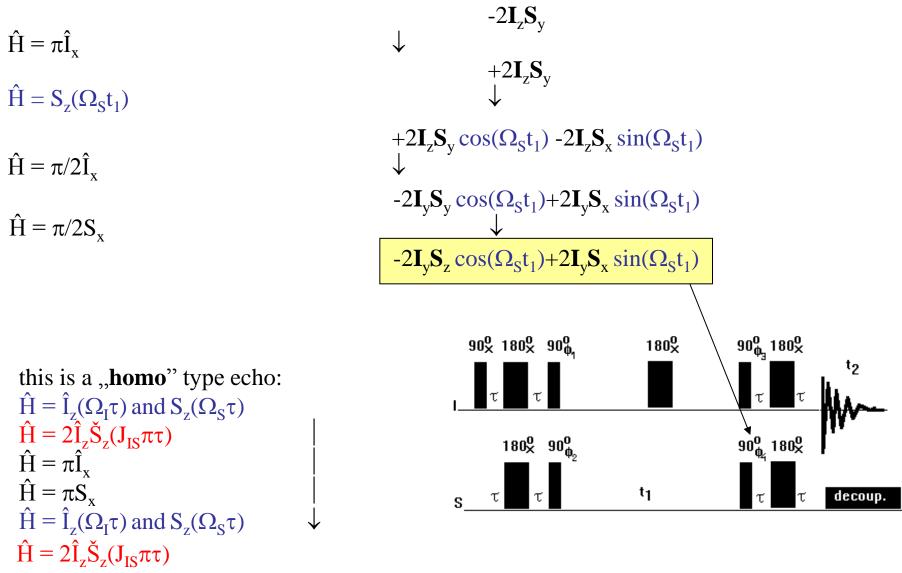
$$\hat{H} = \pi S_{x} \qquad \downarrow \qquad +\mathbf{I}_{y}\cos(\pi J_{IS}^{2}\tau) - 2\mathbf{I}_{x}S_{z}\sin(\pi J_{IS}^{2}\tau)$$



 $\tau = 1/(4J_{IS})$ in order to maximise the coherence transfer from spin I to S if $\tau = 1/(4J_{IS})$, then after $2\tau \sin(\pi J_{IS} 2\tau) = 1$ and $\cos(\pi J_{IS} 2\tau) = 0$

(anti-phased magnet. on I) $-2\mathbf{I}_{\mathbf{x}}\mathbf{S}_{\mathbf{z}}$ $\hat{H} = \pi/2\hat{I}_v$ $+2\mathbf{I}_{z}\mathbf{S}_{z}$ $\hat{H} = \pi/2S_x$ (anti-phased magnet. on S) $-2\mathbf{I}_{z}\mathbf{S}_{v}$
$$\begin{split} \hat{H} &= \hat{I}_z(\Omega_I[1/2t_1]) \\ \hat{H} &= 2\hat{I}_z \check{S}_z(J_{IS}\pi[1/2t_1]) \end{split}$$
hetero echo: 1) coupling is refocused $\hat{H} = \pi \hat{I}_{x}$ 2) chemical shift of I doesn't evolve. $\hat{\mathbf{H}} = \hat{\mathbf{I}}_{\mathbf{r}}(\Omega_{\mathbf{I}}[1/2t_1])$ Thus, the only term to be considered is: $\hat{\mathbf{H}} = 2\hat{\mathbf{I}}_{z}\tilde{\mathbf{S}}_{z}(\mathbf{J}_{\mathrm{IS}}\pi[1/2t_{1}])$ $\hat{H} = \pi \hat{I}_x$ effecting spin S $\hat{H} = S_z(\Omega_S t_1)$

Coupling is refocused during a hetero type echo and the chemical shift of I doesn't evolve.



the chemical shift is refocused so the effective \hat{H} is: $\hat{H} = 2\hat{I}_{z}\hat{S}_{z}(J_{IS}\pi 2\tau), \pi I_{x}$ and πS_{x}

so:

$$\hat{H} = 2\hat{I}_{z}\check{S}_{z}(J_{IS}\pi 2\tau)$$

$$\hat{H} = 2\hat{I}_{z}\check{S}_{z}(J_{IS}\pi 2\tau)$$

$$\hat{H} = \pi\hat{I}_{x}$$

$$\hat{H} = \pi S_{x}$$

$$-2I_{y}S_{z}\cos(\Omega_{S}t_{1})\cos(\pi J_{IS}2\tau)$$

$$+I_{x}\cos(\Omega_{S}t_{1})\sin(\pi J_{IS}2\tau)$$

$$+I_{x}\cos(\Omega_{S}t_{1})\sin(\pi J_{IS}2\tau)$$

$$+I_{x}\cos(\Omega_{S}t_{1})\sin(\pi J_{IS}2\tau)$$

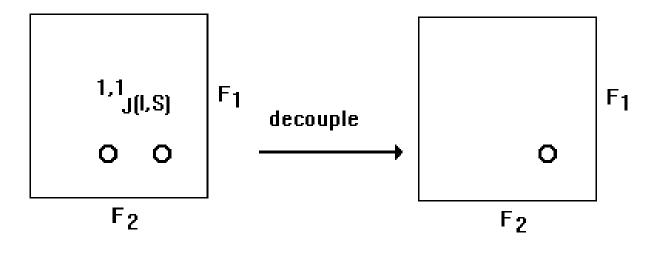
 $+2\mathbf{I}_{z}\mathbf{S}_{y}\cos(\Omega_{s}t_{1})\cos(\pi J_{IS}2\tau) +\mathbf{I}_{x}\cos(\Omega_{s}t_{1})\sin(\pi J_{IS}2\tau)$

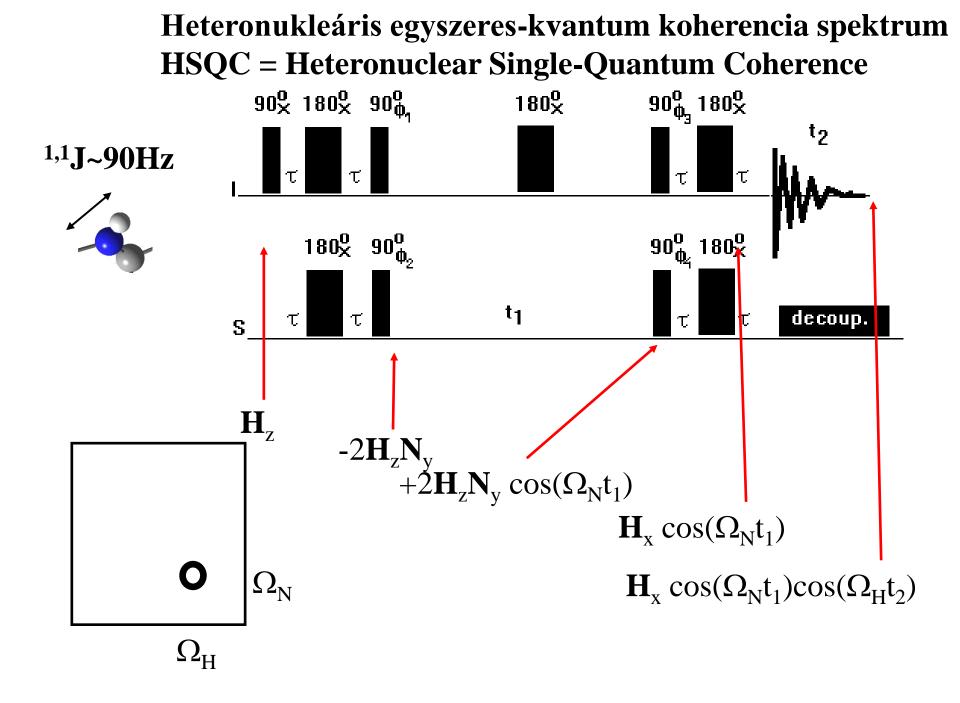
 $\tau = 1/(4J_{IS})$ to maximise the coherence transfer from I to S (if $\tau = 1/(4J_{IS})$ then after $2\tau \sin(\pi J_{IS} 2\tau) = 1$ and $\cos(\pi J_{IS} 2\tau) = 0$)

So before ACQ the following term remains: $+\mathbf{I}_{\mathbf{x}} \cos(\Omega_{\mathbf{S}} \mathbf{t}_{1})$ ACQ $\hat{\mathbf{H}} = \hat{\mathbf{I}}_{z}(\Omega_{\mathbf{I}}[\mathbf{t}_{2}])_{\text{and}} \mathbf{S}_{z}(\Omega_{\mathbf{S}}[\mathbf{t}_{2}]) \qquad \downarrow$ $\hat{\mathbf{H}} = 2\hat{\mathbf{I}}_{z}\check{\mathbf{S}}_{z}(\mathbf{J}_{\mathbf{IS}}\pi[\mathbf{t}_{2}])$ $+\mathbf{I}_{x}\cos(\Omega_{\mathbf{S}}\mathbf{t}_{1})\cos(\Omega_{\mathbf{I}}\mathbf{t}_{2})\cos(\pi\mathbf{J}_{\mathbf{IS}}\mathbf{t}_{2})$ $+2\mathbf{I}_{y}\mathbf{S}_{z}\cos(\Omega_{\mathbf{S}}\mathbf{t}_{1})\cos(\Omega_{\mathbf{I}}\mathbf{t}_{2})\sin(\pi\mathbf{J}_{\mathbf{IS}}\mathbf{t}_{2})$ $+\mathbf{I}_{y}\cos(\Omega_{\mathbf{S}}\mathbf{t}_{1})\sin(\Omega_{\mathbf{I}}\mathbf{t}_{2})\cos(\pi\mathbf{J}_{\mathbf{IS}}\mathbf{t}_{2})$ $-2\mathbf{I}_{x}\mathbf{S}_{z}\cos(\Omega_{\mathbf{S}}\mathbf{t}_{1})\sin(\Omega_{\mathbf{I}}\mathbf{t}_{2})\sin(\pi\mathbf{J}_{\mathbf{IS}}\mathbf{t}_{2})$ $\begin{array}{ll} \textit{memo 1: put the receiver on x} \\ \textit{therefore only the single x term remains : } + \mathbf{I}_x \cos(\Omega_S t_1) \sin(\Omega_I t_2) \cos(\pi \mathbf{J}_{IS} t_2) \\ \textit{memo 2: } sin(A) cos(B) = 1/2[sin(A+B) + sin(A-B)] \\ \textit{therefore:} \\ -1/2\mathbf{I}_x \cos(\Omega_S t_1) [+sin\{(\Omega_I + \pi \mathbf{J}_{IS}) t_2\} + sin\{(\Omega_I - \pi \mathbf{J}_{IS}) t_2\}] \\ \textit{the following term can be found} \quad - \mathbf{I}_x [+ ... + ..] \text{ at } \Omega_I, \Omega_S \\ \textit{if one sets the phase that} \quad cos is absorptive (a) in t_1 \\ sin is absorptive (d) in t_2 \\ \mathbf{I}_x [+a... + a..] \text{ at } \Omega_I, \Omega_S \end{array}$

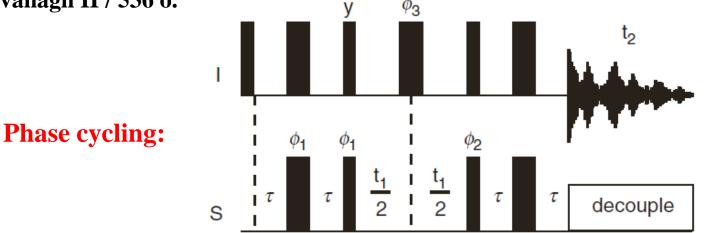
Singulet in F1 and the in phased doublet in F2. ($^{1,1}J[H,N] \cong 90 \text{ Hz}$, $^{1,1}J[H,C] \cong 150 \text{ Hz}$)

if we decouple during $t_2(\hat{H} = 2\hat{I}_z\check{S}_z(J_{IS}\pi[t_2])$ is not active) then the spectrum is $I_x[+a]$ at Ω_I , Ω_S



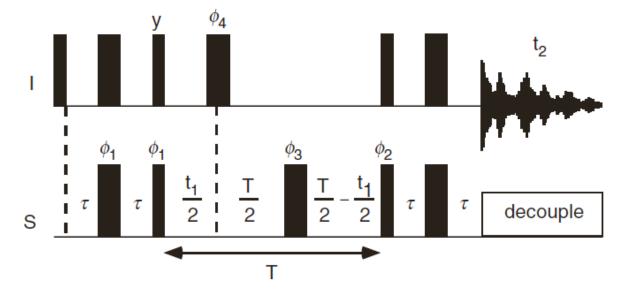


HSQC-CT = Heteronuclear Single-Quantum Coherence with constant time Cavanagh II / 536 o. $\sqrt{\frac{\phi_2}{\phi_2}}$

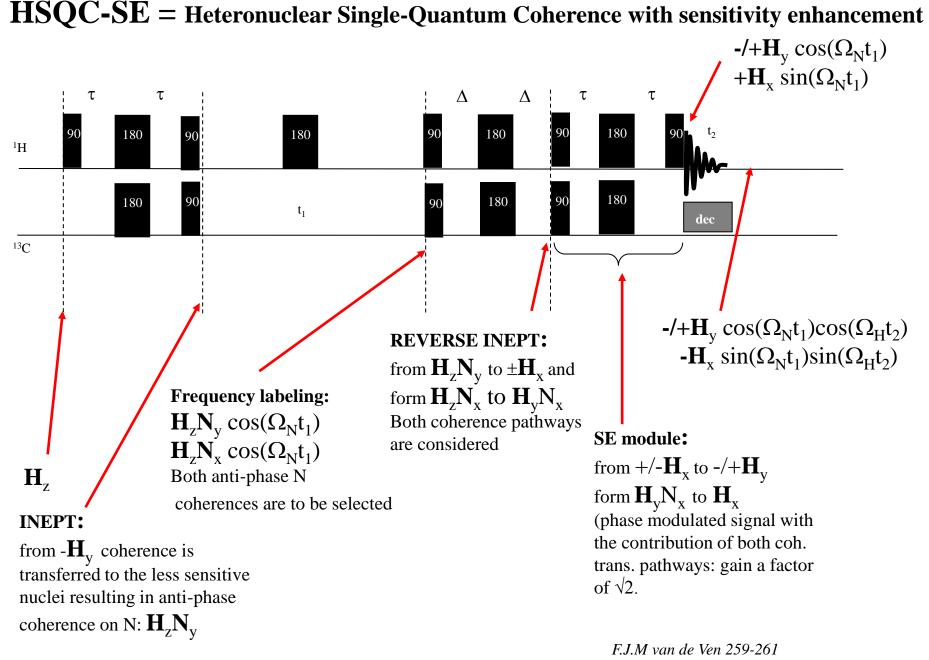


2(-x, x, x, -x). (b) Phase cycling for the HSQC experiment is $\phi_1 = x, -x$; $\phi_2 = 2(x), 2(-x); \phi_3 = 4(y), 4(-y)$; and receiver = x, -x, -x, x. (c) Phase cycling

HSQC-CT = Heteronuclear Single-Quantum Coherence with constant time Cavanagh II / 536 o.



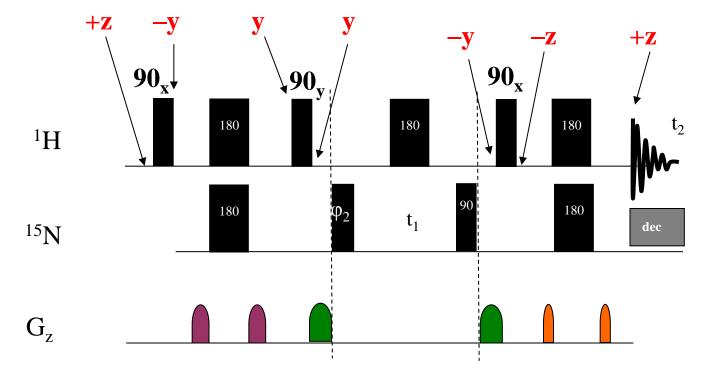
 $\phi_2 = 2(x), 2(-x); \phi_3 = 4(y), 4(-y);$ and receiver = x, -x, -x, x. (c) Phase cycling for the constant-time HSQC experiment is $\phi_1 = x, -x; \phi_2 = 8(x), 8(-x);$ $\phi_3 = 2(x), 2(y), 2(-x), 2(-y); \phi_4 = 16(y), 16(-y);$ and receiver = 2(x, -x, -x, x), 2(-x, x, x, -x). If desired, this 32-step phase cycle can be reduced to 8 steps



Palmer et al. J.Magn.Reson. 1991, 93, 151-170 Cavanagh & Rance J.Magn.Reson. 1990, 88, 72-85

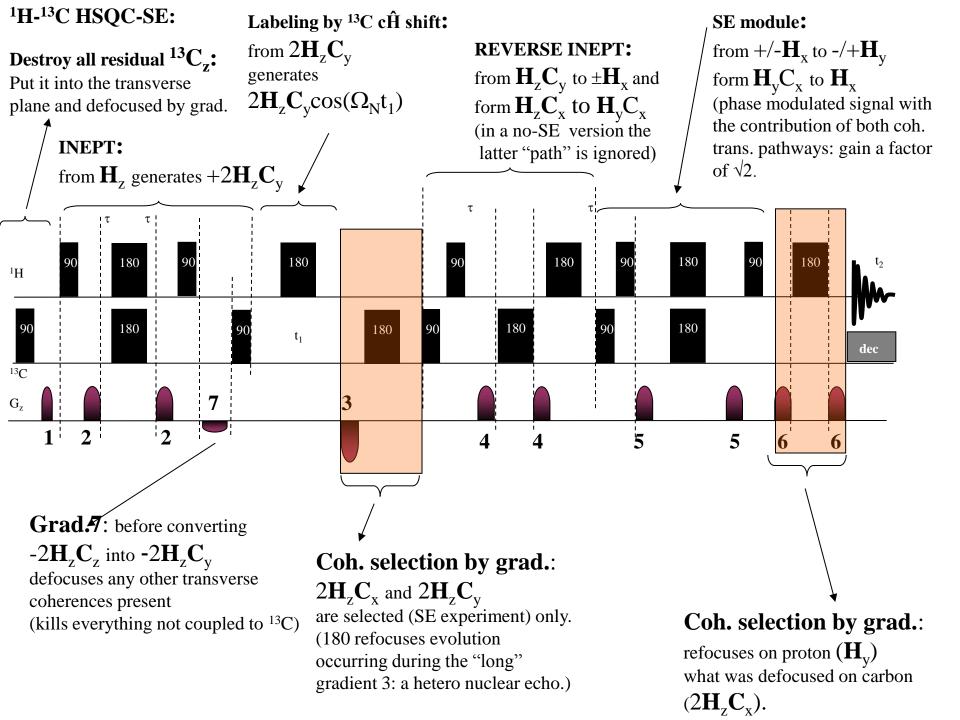
HSQC = Heteronuclear Single-Quantum Coherence

Monitoring H₂O along the sequence:



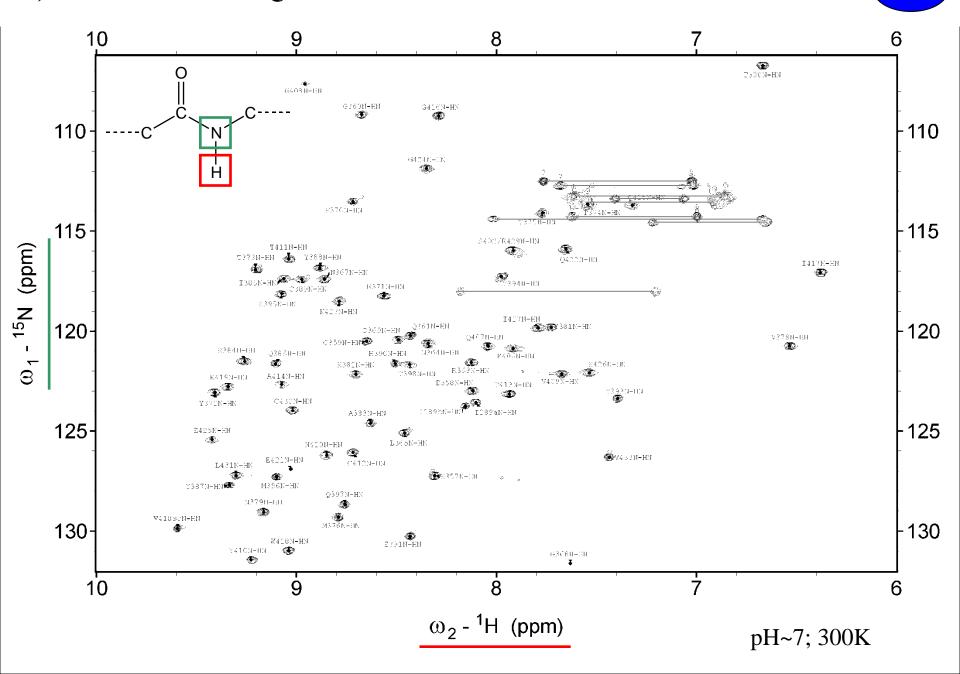
What is happanining with the balk water during the HSQC pulses? + \mathbf{I}_z -(90°_x) \rightarrow - \mathbf{I}_y -(180°_x) \rightarrow + \mathbf{I}_y -(90°_y) \rightarrow + \mathbf{I}_y -(180°_x) \rightarrow - \mathbf{I}_y -(90°_x) \rightarrow - \mathbf{I}_z -(180°_x) \rightarrow + \mathbf{I}_z

Water before acquisition is aligned along +z. Thus, most of the water is not detected during t_2 . Unfortunately, that part of the water which is not parallel to z will be detected as residual water. The latter amount of water should be minimized, (dynamic range problem of the detectors).

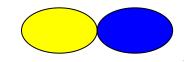


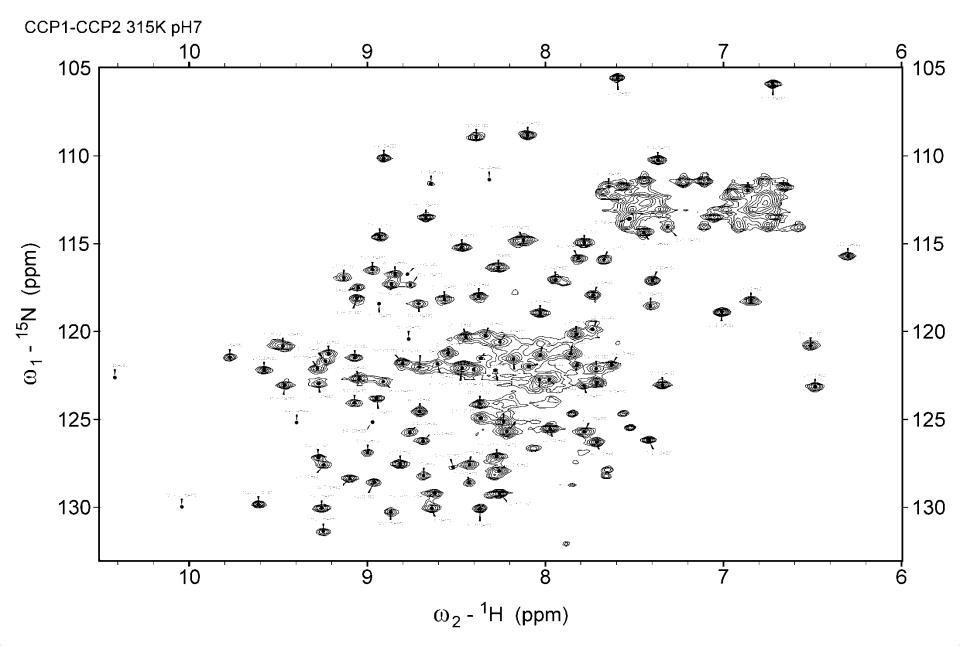
1)

¹H-¹⁵N HSQC: CCP2



Az azonosított gerinc NH jelek a modulpárból





Signal dispersion of a globular and an IUP 92 96 100 globular 104 108 Due to the 112 Ko 116 averaged 120 124 environment, the 128 132 ¹H dispersion of 136 140 3 **IUPs** is low! = LVS SpinWorks 2.5: PPM (F2) 9.2 PPM (F 8.8 8.0 7.6 7.2 6.8 -106 108 110 112 114 IUP 116 118 120 K • 122 124 126 128 130 132 Н 134 136 138 140 142 R PPM (F2) 9.2 8.8 8.0 7.6 7.2 6.8 PPM (F1) ¹⁵N correlation spectra of a globular and of an IUP. ¹H -