HSQC = Heteronuclear Single-Quantum Coherence

The pulse sequence:
Consider: $\Omega_{\mathrm{I}}, \Omega_{\mathrm{S}}$ and J_{IS}
$\tau=1 /\left(4 \mathrm{~J}_{\text {IS }}\right)$ in order to maximize the coherence transfer from I to S

The overal pulse sequence can be subdivided as follows: INEPT + echo + INEPT.

1) The first INEPT is to improve the sensitivity of the low magnetogyric ratio nuclei $\left({ }^{15} \mathrm{~N},{ }^{13} \mathrm{C}\right)$.
2) During the defocused delay (echo), t_{1}, only Ω_{S} evolves (coupling is refocused).
3) The final INEPT-type unit is to perform inverse detection (observing the frequency of the low magnetogyric ratio nuclei as ${ }^{1} \mathrm{H}$ magnetization.)

$$
\begin{aligned}
& \sigma[\text { eq.] } \\
& \hat{\mathrm{H}}=\pi / 2\left(\hat{\mathrm{I}}_{\mathrm{x}}\right) \\
& \sigma[0] \\
& \text { this is a „homo" type echo: } \\
& \hat{\mathrm{H}}=\hat{\mathrm{I}}_{\mathrm{Z}}\left(\Omega_{\mathrm{I}} \tau\right) \text { and } \mathrm{S}_{\mathrm{Z}}\left(\Omega_{\mathrm{S}} \tau\right) \\
& \hat{H}=2 \hat{I} \check{I}_{Z} \check{S}_{z}\left(\mathrm{~J}_{\mathrm{IS}} \pi \tau\right) \\
& \hat{\mathrm{H}}=\pi \hat{\mathrm{I}}_{\mathrm{x}} \\
& \hat{\mathrm{H}}=\pi \mathrm{S}_{\mathrm{x}} \\
& \hat{H}=\hat{I}_{z}\left(\Omega_{\mathrm{I}} \tau\right) \text { and } \mathrm{S}_{\mathrm{z}}\left(\Omega_{\mathrm{S}} \tau\right) \\
& \hat{\mathrm{H}}=2 \hat{\mathrm{I}}_{\mathrm{Z}} \check{\mathrm{~S}}_{\mathrm{z}}\left(\mathrm{~J}_{\mathrm{IS}} \pi \tau\right)
\end{aligned}
$$

the chemical shift is refocused but coupling evolves, thus the effective \hat{H} is composed of 3 terms: $\hat{H}=2 \hat{\mathrm{I}}_{\mathrm{Z}} \check{S}_{\mathrm{z}}\left(\mathrm{J}_{\mathrm{IS}} \pi 2 \tau\right), \hat{\mathrm{H}}=\pi \hat{\mathrm{I}}_{\mathrm{x}}$ and $\hat{\mathrm{H}}=\pi \mathrm{S}_{\mathrm{x}}$

$$
\begin{array}{lc}
\begin{array}{l}
\sigma[0] \\
\hat{\mathrm{H}}=2 \hat{\mathrm{I}}_{\mathrm{z}} \check{S}_{\mathrm{z}}\left(\mathrm{~J}_{\mathrm{IS}} \pi 2 \tau\right)
\end{array} & -\mathbf{I}_{\mathrm{y}} \\
\hat{\mathrm{I}} \mathrm{cos}\left(\pi \mathrm{~J}_{\mathrm{IS}} \stackrel{2}{2} \tau\right)+2 \mathbf{I}_{\mathrm{x}} \mathbf{S}_{\mathrm{z}} \sin \left(\pi \mathrm{~J}_{\mathrm{IS}} 2 \tau\right) \\
\hat{\mathrm{H}}=\pi \hat{\mathrm{I}}_{\mathrm{x}} & +\mathbf{I}_{\mathrm{y}} \cos \left(\pi \mathrm{~J}_{\mathrm{IS}} 2 \tau\right)+2 \mathbf{I}_{\mathrm{x}} \mathbf{S}_{\mathrm{z}} \sin \left(\pi \mathrm{~J}_{\mathrm{IS}} 2 \tau\right) \\
\hat{\mathrm{H}}=\pi \mathrm{S}_{\mathrm{x}} & \downarrow \\
& +\mathbf{I}_{\mathrm{y}} \cos \left(\pi \mathrm{~J}_{\mathrm{IS}} 2 \tau\right)-2 \mathbf{I}_{\mathrm{x}} \mathbf{S}_{\mathrm{z}} \sin \left(\pi \mathrm{~J}_{\mathrm{IS}} 2 \tau\right)
\end{array}
$$

$+\mathbf{I}_{\mathrm{y}} \cos \left(\pi \mathrm{J}_{\mathrm{IS}} 2 \tau\right)-2 \mathbf{I}_{\mathrm{x}} \mathbf{S}_{\mathrm{z}} \sin \left(\pi \mathrm{J}_{\mathrm{IS}} 2 \tau\right)$

Coupling is refocused during a hetero type echo and the chemical shift of I doesn't evolve.

$$
\begin{aligned}
& \hat{\mathrm{H}}=\pi \hat{\mathrm{I}}_{\mathrm{x}} \\
& \hat{\mathrm{H}}=\mathrm{S}_{\mathrm{z}}\left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \\
& \hat{\mathrm{H}}=\pi / 2 \hat{\mathrm{I}}_{\mathrm{x}} \\
& \hat{\mathrm{H}}=\pi / 2 \mathrm{~S}_{\mathrm{x}}
\end{aligned}
$$

$\downarrow \quad-2 \mathbf{I}_{z} \mathrm{~S}_{\mathrm{y}}$	
	$\begin{aligned} & +2 \mathbf{I}_{\mathrm{z}} \mathbf{S}_{\mathrm{y}} \\ & \downarrow \end{aligned}$
	$+2 \mathbf{I}_{z} \mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)-2 \mathbf{I}_{\mathrm{z}} \mathbf{S}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)$
	$-2 \mathbf{I}_{\mathrm{y}} \mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)+2 \mathbf{I}_{\mathrm{y}} \mathbf{S}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)$
	$-2 \mathbf{I}_{\mathrm{y}} \mathbf{S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)+2 \mathbf{I}_{\mathrm{y}} \mathbf{S}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)$

this is a „homo" type echo:
$\hat{H}=\hat{I}_{z}\left(\Omega_{\mathrm{I}} \tau\right)$ and $\mathrm{S}_{\mathrm{z}}\left(\Omega_{\mathrm{S}} \tau\right)$
$\hat{\mathrm{H}}=2 \hat{\mathrm{I}}_{\mathrm{Z}} \check{S}_{\mathrm{Z}}\left(\mathrm{J}_{\mathrm{IS}} \pi \tau\right)$
$\hat{\mathrm{H}}=\pi \hat{\mathrm{I}}_{\mathrm{x}}$
$\hat{H}=\pi \mathrm{S}_{\mathrm{x}}$

$\hat{H}=\hat{I}_{z}\left(\Omega_{\mathrm{I}} \tau\right)$ and $\mathrm{S}_{\mathrm{z}}\left(\Omega_{\mathrm{S}} \tau\right)$
$\hat{H}=2 \hat{\mathrm{I}}_{\mathrm{z}} \check{\mathrm{S}}_{\mathrm{Z}}\left(\mathrm{J}_{\mathrm{IS}} \pi \tau\right)$
the chemical shift is refocused so the effective \hat{H} is: $\hat{\mathbf{H}}=2 \hat{\mathbf{I}}_{z} \check{S}_{\mathbf{z}}\left(\mathbf{J}_{\mathrm{IS}} \pi 2 \tau\right), \pi \mathbf{I}_{\mathbf{x}}$ and $\pi \mathbf{S}_{\mathbf{x}}$

$$
\begin{aligned}
& \begin{array}{l}
\text { so: } \\
\hat{H}=2 \hat{I}_{z} \check{S}_{z}\left(J_{\text {IS }} \pi 2 \tau\right)
\end{array} \\
& \hat{\mathrm{H}}=\pi \hat{\mathrm{I}}_{\mathrm{x}} \\
& \hat{\mathrm{H}}=\pi \mathrm{S}_{\mathrm{x}} \\
& \begin{array}{lll}
-2 \mathbf{I}_{\mathrm{y}} \mathbf{S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) & \downarrow \quad+2 \mathbf{I}_{\mathrm{y}} \mathbf{S}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) & \text { (multiple quantum term) }
\end{array} \\
& -2 \mathbf{I}_{\mathrm{y}} \mathbf{S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} 2 \tau\right) \quad+\mathbf{I}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} 2 \tau\right) \\
& -2 \mathbf{I}_{\mathrm{z}} \mathbf{S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} 2 \tau\right) \quad+\mathbf{I}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} 2 \tau\right) \\
& +2 \mathbf{I}_{\mathrm{z}} \mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} 2 \tau\right) \quad+\mathbf{I}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} 2 \tau\right) \\
& \tau=1 /\left(4 \mathrm{~J}_{\mathrm{IS}}\right) \quad \text { to maximise the coherence transfer from I to } \mathrm{S} \\
& \text { (if } \tau=1 /\left(4 \mathrm{~J}_{\text {IS }}\right) \text { then after } 2 \tau \sin \left(\pi \mathrm{~J}_{\text {IS }} 2 \tau\right)=1 \text { and } \cos \left(\pi \mathrm{J}_{\text {IS }} 2 \tau\right)=0 \text {) } \\
& \text { So before ACQ the following term remains: } \quad+I_{x} \cos \left(\Omega_{S} t_{1}\right) \\
& \text { ACQ } \\
& \hat{H}=\hat{I}_{\mathrm{z}}\left(\Omega_{\mathrm{I}}\left[\mathrm{t}_{2}\right]\right) \text { and } \mathrm{S}_{\mathrm{z}}\left(\Omega_{\mathrm{S}}\left[\mathrm{t}_{2}\right]\right) \\
& \hat{\mathrm{H}}=2 \hat{\mathrm{I}}_{\mathrm{z}} \check{\mathrm{~S}}_{\mathrm{z}}\left(\mathrm{~J}_{\mathrm{IS}} \pi\left[\mathrm{t}_{2}\right]\right) \\
& +\mathbf{I}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& +2 \mathbf{I}_{\mathrm{y}} \mathbf{S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& +\mathbf{I}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& -2 \mathbf{I}_{\mathrm{X}} \mathbf{S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right)
\end{aligned}
$$

memo 1: put the receiver on x
therefore only the single x term remains: $\quad+\mathbf{I}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right)$
memo 2: $\sin (A) \cos (B)=1 / 2[\sin (A+B)+\sin (A-B)]$
therefore:
$-1 / 2 \mathbf{I}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)\left[+\sin \left\{\left(\Omega_{\mathrm{I}}+\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{2}\right\}+\sin \left\{\left(\Omega_{\mathrm{I}}-\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{2}\right\}\right]$
the following term can be found

$$
-\mathbf{I}_{\mathrm{x}}[+. .+. .] \text { at } \Omega_{\mathrm{I}}, \Omega_{\mathrm{S}}
$$

if one sets the phase that cos is absorptive (a) in t_{1} sin is absorptive (d) in t_{2}

$$
\mathbf{I}_{\mathrm{x}}[+\mathrm{a} . .+\mathrm{a} . .] \text { at } \Omega_{\mathrm{I}}, \Omega_{\mathrm{S}}
$$

Singulet in F1 and the in phased doublet in F2. ($\left.{ }^{1,1} \mathrm{~J}[\mathrm{H}, \mathrm{N}] \cong 90 \mathrm{~Hz},{ }^{1,1} \mathrm{~J}[\mathrm{H}, \mathrm{C}] \cong 150 \mathrm{~Hz}\right)$ if we decouple during $\mathrm{t}_{2}\left(\hat{\mathrm{H}}=2 \hat{I}_{\mathrm{z}} \check{S}_{\mathrm{z}}\left(\mathrm{J}_{\text {IS }} \pi\left[\mathrm{t}_{2}\right]\right)\right.$ is not active $)$ then the spectrum is

$$
\mathbf{I}_{\mathrm{x}}[+\mathrm{a}] \text { at } \Omega_{\mathrm{I}}, \Omega_{\mathrm{S}}
$$

Heteronukleáris egyszeres-kvantum koherencia spektrum HSQC = Heteronuclear Single-Quantum Coherence

HSQC-CT = Heteronuclear Single-Quantum Coherence with constant time Cavanagh II / 536 o.

Phase cycling:

$2(-x, x, x,-x)$. (b) Phase cycling for the HSQC experiment is $\phi_{1}=x,-x$; $\phi_{2}=2(x), 2(-x) ; \phi_{3}=4(y), 4(-y)$; and receiver $=x,-x,-x, x$. (c) Phase cycling

HSQC-CT $=$ Heteronuclear Single-Quantum Coherence with constant time Cavanagh II / 536 o.

$\phi_{2}=2(x), 2(-x) ; \phi_{3}=4(y), 4(-y)$; and receiver $=x,-x,-x, x$. (c) Phase cycling for the constant-time HSQC experiment is $\phi_{1}=x,-x ; \phi_{2}=8(x), 8(-x)$; $\phi_{3}=2(x), 2(y), 2(-x), 2(-y) ; \phi_{4}=16(y), 16(-y)$; and receiver $=2(x,-x,-x$, $x), 2(-x, x, x,-x)$. If desired, this 32 -step phase cycle can be reduced to 8 steps

HSQC-SE = Heteronuclear Single-Quantum Coherence with sensitivity enhancement

 coherence on $\mathrm{N}: \mathbf{H}_{\mathrm{z}} \mathbf{N}_{\mathrm{y}}$

HSQC = Heteronuclear Single-Quantum Coherence

Monitoring $\mathrm{H}_{2} \mathrm{O}$ along the sequence:

What is happanining with the balk water during the HSQC pulses?
$+\mathbf{I}_{\mathrm{z}}-\left(90^{\circ}{ }_{\mathrm{x}}\right) \rightarrow-\mathbf{I}_{\mathrm{y}}-\left(180^{\circ}{ }_{\mathrm{x}}\right) \rightarrow+\mathbf{I}_{\mathrm{y}}-\left(90^{\circ}{ }_{\mathrm{y}}\right) \rightarrow+\mathbf{I}_{\mathrm{y}}-\left(180^{\circ}{ }_{\mathrm{x}}\right) \rightarrow-\mathbf{I}_{\mathrm{y}}-\left(90^{\circ}{ }_{\mathrm{x}}\right) \rightarrow-\mathbf{I}_{\mathrm{z}}-\left(180^{\circ}{ }_{\mathrm{x}}\right) \rightarrow+\mathbf{I}_{\mathrm{z}}$
Water before acquisition is aligned along $+z$. Thus, most of the water is not detected during t_{2}. Unfortunately, that part of the water which is not parallel to z will be detected as residual water. The latter amount of water should be minimized, (dynamic range problem of the detectors).

```
\({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\) HSQC-SE:
```

Destroy all residual ${ }^{13} \mathrm{C}_{\mathrm{z}}$: Put it into the transverse plane and defocused by grad.

Labeling by ${ }^{13} \mathrm{C}$ ĉ shift:
from $2 \mathbf{H}_{z} \mathrm{C}_{\mathrm{y}}$
generates
$2 \mathbf{H}_{\mathrm{z}} \mathbf{C}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{N}} \mathrm{t}_{1}\right)$

INEPT:
from H_{z} generates $+2 \mathrm{H}_{\mathrm{z}} \mathrm{C}_{\mathrm{y}}$

$$
{ }^{1} \mathrm{H}
$$

Grad.7: before converting $-2 \mathbf{H}_{\mathrm{z}} \mathbf{C}_{\mathrm{z}}$ into $-2 \mathbf{H}_{\mathrm{z}} \mathbf{C}_{\mathrm{y}}$ defocuses any other transverse coherences present (kills everything not coupled to ${ }^{13} \mathrm{C}$)

Coh. selection by grad.: $2 \mathrm{H}_{\mathrm{z}} \mathrm{C}_{\mathrm{x}}$ and $2 \mathrm{H}_{\mathrm{z}} \mathrm{C}_{\mathrm{y}}$ are selected (SE experiment) only. (180 refocuses evolution occurring during the "long" gradient 3: a hetero nuclear echo.)

SE module:

from $+/-\mathbf{H}_{x}$ to $-/+\mathbf{H}_{y}$ form $\mathbf{H}_{y} \mathbf{C}_{\mathrm{x}}$ to \mathbf{H}_{x} (phase modulated signal with the contribution of both coh. trans. pathways: gain a factor of $\sqrt{ } 2$.

1) ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC: CCP2

Az azonosított gerinc NH jelek a modulpárból

Signal dispersion of a globular and an IUP

Due to the averaged environment, the ${ }^{1} \mathrm{H}$ dispersion of IUPs is low!

${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ correlation spectra of a globular and of an IUP.

