NOESY = Nuclear Overhauser Effect SpectroscopY

The pulse sequence:

$$
90_{x}^{\circ}-\mathrm{t}_{1}-90_{\mathrm{x}}^{\circ}-\mathrm{t}_{\text {mix. }}-90_{\mathrm{x}}^{\circ}-\mathrm{t}_{2}
$$

Memo 1: in a NOE type experiment both magnetization (I_{z} and S_{z}) and the zero quantum coherence terms are important.
Consider: $\Omega_{\mathrm{I}}, \Omega_{\mathrm{S}}$ and J_{IS}

$$
\begin{aligned}
& \sigma \text { [eq.] } \quad \mathbf{I}_{\mathrm{z}} \text { and } \mathbf{S}_{\mathrm{z}} \\
& \hat{\mathrm{H}}=\pi / 2\left(\hat{\mathrm{I}}_{\mathrm{x}}+\check{\mathrm{S}}_{\mathrm{x}}\right) \quad \downarrow 90^{\circ}{ }_{\mathrm{x}} \\
& \sigma[0] \\
& \hat{H}=\hat{I}_{z}\left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right)+\check{\mathrm{S}}_{\mathrm{z}}\left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \\
& \hat{\mathrm{H}}=2 \hat{I}_{\mathrm{Z}} \check{\mathrm{~S}}_{\mathrm{z}}\left(\mathrm{~J}_{\mathrm{IS}} \pi \mathrm{t}_{1}\right) \\
& -\mathbf{I}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \\
& +\mathbf{I}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \\
& -\mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \\
& \underset{\downarrow}{\downarrow} \mathbf{S}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \\
& -\mathbf{I}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& +2 \mathbf{I}_{\mathrm{x}} \mathbf{S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \\
& +\mathbf{I}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& +2 \mathbf{I}_{\mathbf{y}} \mathbf{S}_{\mathrm{z}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& -\mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& +2 \mathbf{S}_{\mathrm{x}} \mathbf{I}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& +\mathbf{S}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& +2 \mathbf{S}_{\mathbf{y}} \mathbf{I}_{\mathrm{z}} \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \downarrow 90_{\mathrm{x}}^{\circ} \text { memo. }=\cos (\pi / 2)=0, \sin (\pi / 2)=1 \\
& -\mathbf{I}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& -2 \mathbf{I}_{\mathrm{x}} \mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& +\mathbf{I}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& \quad-2 \mathbf{I}_{\mathrm{z}} \mathbf{S}_{\mathrm{y}} \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& -\mathbf{S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& \quad-2 \mathbf{S}_{\mathrm{x}} \mathbf{I}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& +\mathbf{S}_{\mathrm{x}} \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& \quad-2 \mathbf{S}_{\mathrm{z}} \mathbf{I}_{\mathrm{y}} \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)
\end{aligned}
$$

Memo 2. \mathbf{I}_{z} and \mathbf{S}_{z} are z magnetizations, $\mathbf{I}_{\mathrm{x}}, \mathbf{S}_{\mathrm{x}}$ as well as $\mathbf{I}_{\mathrm{z}} \mathbf{S}_{\mathrm{y}}$ and $\mathbf{S}_{\mathrm{z}} \mathbf{I}_{\mathrm{y}}$ are single-quantum coherences, $\mathbf{I}_{\mathrm{x}} \mathbf{S}_{\mathrm{y}}$ and $\mathbf{S}_{\mathrm{x}} \mathbf{I}_{\mathrm{y}}$ are double-quantum coherences.

Memo 3: Both \mathbf{Z} magnetizations (\mathbf{I}_{z} and \mathbf{S}_{z}) as well as the \underline{Z} ero $\underline{\text { Quantum parts }}(\mathbf{Z Q})$ of the Double Quantum terms (DQ) are relevant for NOE.

- Note that ZQ terms can't be removed from the spectrum with phase-cycling and thus bellow we will work out only the ZQ part of the DQ term.

$$
\begin{aligned}
& \mathrm{I}^{+}=\mathrm{I}_{\mathrm{x}}+\mathrm{iI}_{\mathrm{y}} \\
& \mathrm{I}^{-}=\mathrm{I}_{\mathrm{x}}-\mathrm{iI}_{\mathrm{y}} \\
& \mathrm{~S}^{+}=\mathrm{S}_{\mathrm{x}}+\mathrm{i} \mathrm{~S}_{\mathrm{y}} \\
& \mathrm{~S}^{-}=\mathrm{S}_{\mathrm{x}}-\mathrm{i} \mathrm{~S}_{\mathrm{y}}
\end{aligned}
$$

consequently

$$
\begin{aligned}
& 1 / 2\left[\mathrm{I}^{+}+\mathrm{I}^{-}\right]=\mathrm{I}_{\mathrm{x}} \text { and } 1 /(2 \mathrm{i})\left[\mathrm{I}^{+}-\mathrm{I}^{-}\right]=\mathrm{I}_{\mathrm{y}} \\
& 1 / 2\left[\mathrm{~S}^{+}+\mathrm{S}^{-}\right]=\mathrm{S}_{\mathrm{x}} \text { and } 1 /(2 \mathrm{i})\left[\mathrm{S}^{+}-\mathrm{S}^{-}\right]=\mathrm{S}_{\mathrm{y}}
\end{aligned}
$$

therefore

$$
-2 \mathbf{I}_{x} \mathbf{S}_{\mathrm{y}}=-2\left\{1 / 2\left[\mathrm{I}^{+}+\mathrm{I}^{-}\right] 1 /(2 \mathrm{i})\left[\mathrm{S}^{+}-\mathrm{S}^{-}\right]\right\}=-1 /(2 \mathrm{i})\left\{\mathrm{I}^{+} \mathrm{S}^{+}-\mathrm{I}^{+} \mathbf{S}^{-}+\mathrm{I}^{-} \mathrm{S}^{+}-\mathrm{I}^{-} \mathrm{S}^{-}\right\}
$$

only $\mathrm{I}^{+} \mathrm{S}^{+}$and $\mathrm{I}^{-} \mathrm{S}^{-}$are double quant. coh. (or coherence order 2),
$\mathrm{I}^{+} \mathbf{S}^{-}$and $\mathrm{I}^{-} \mathrm{S}^{+}$are zero quant. coh. (or coherence order 0)
through phase cycling the double quantum coherences are removed, while $\quad-1 /(2 i)\left\{-I^{+} S^{-}+I^{-} S^{+}\right\}$terms remain.
finally: $\quad-1 /(2 \mathrm{i})\left[-1\left\{\left(\mathrm{I}_{\mathrm{x}}+\mathrm{iI}_{\mathrm{y}}\right)\left(\mathrm{S}_{\mathrm{x}}-\mathrm{iS}_{\mathrm{y}}\right)\right\}+\left\{\left(\mathrm{I}_{\mathrm{x}}-\mathrm{iI}_{\mathrm{y}}\right)\left(\mathrm{S}_{\mathrm{x}}+\mathrm{iS}_{\mathrm{y}}\right)\right\}\right]=$

$$
-1 /(2 i)\left[-I_{x} S_{x}-i I_{y} S_{x}+i I_{x} S_{y}-I_{y} S_{y}+I_{x} S_{x}-i I_{y} S_{x}+i I_{x} S_{y}+I_{y} S_{y}\right]
$$

$$
-1 /(2 \mathrm{i})\left[-\mathrm{i} 2 \mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}}+\mathrm{i} 2 \mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}}\right]
$$

$$
\underbrace{\left[+\mathbf{I}_{\mathbf{y}} \hat{S}_{\mathbf{x}}-\hat{I}_{\mathbf{x}} \mathbf{S}_{\mathbf{y}}\right]}
$$

In summary: $-2 \mathbf{I}_{x} \mathbf{S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \Rightarrow\left[+\mathrm{I}_{\mathrm{y}} \mathrm{S}_{\mathrm{x}}-\mathrm{I}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right] \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right)$ for the same reason from the $-2 I_{y} \mathbf{S}_{x}$ term, the $+\left[\mathrm{I}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}-\mathrm{I}_{\mathrm{y}} \mathrm{S}_{\mathrm{x}}\right] \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right)$ terms have zero quantum coherence.

$$
\begin{gathered}
{\left[+\mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}}-\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}}\right] \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)} \\
{\left[+\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}}-\mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}}\right] \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)} \\
\downarrow
\end{gathered}
$$

```
term A: [+ I}\mp@subsup{I}{y}{}\mp@subsup{\textrm{S}}{\textrm{x}}{}-\mp@subsup{\textrm{I}}{\textrm{x}}{}\mp@subsup{\textrm{S}}{\textrm{y}}{}
term B: [+I I}\mp@subsup{\textrm{S}}{\textrm{y}}{}-\mp@subsup{\textrm{I}}{\textrm{y}}{}\mp@subsup{\textrm{S}}{\textrm{x}}{}]\operatorname{cos}(\mp@subsup{\Omega}{\textrm{S}}{}\mp@subsup{\textrm{t}}{1}{})\operatorname{sin}(\pi\mp@subsup{\textrm{J}}{\textrm{IS}}{}\mp@subsup{\textrm{t}}{1}{}
```

The result of the addition of term A plus B results in the following 4 terms:

$$
\begin{aligned}
\mathrm{A}+\mathrm{B} \text { term }= & +\mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)-\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \\
& +\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)-\mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)
\end{aligned}
$$

Written in a condensed form:

$$
\left[\mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}}-\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}}\right]\left[\cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right)-\cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)\right] \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)
$$

Before the mixing starts we have the following terms with quant. number 0 .

$$
\begin{gathered}
-\mathbf{I}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
-\mathbf{S}_{\mathrm{z}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{II}} \mathrm{t}_{1}\right) \\
{\left[\mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}}-\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}}\right]\left[\cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right)-\cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)\right] \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)}
\end{gathered}
$$

$\sigma\left[\mathrm{t}_{1}, 0\right]$
with mix. coeff. : $\mathrm{a}_{\text {II }}, \mathrm{a}_{\text {IS }}, \mathrm{a}_{\text {SI }}, \mathrm{a}_{\text {SS }}$ during the mixing time (τ_{m}) the populations $\left(-\mathbf{I}_{\mathrm{z}} \mathrm{a}_{\mathrm{II}},-\mathbf{I}_{\mathrm{z}} \mathrm{a}_{\mathrm{IS}},-\mathbf{S}_{\mathrm{z}} \mathrm{a}_{\mathrm{SI}}\right.$ and $\left.-\mathbf{S}_{\mathrm{z}} \mathrm{a}_{\mathrm{SS}}\right)$ interact, while the zero-quantum term ($\left[\mathrm{I}_{\mathrm{y}} \mathrm{S}_{\mathrm{x}}-\mathrm{I}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right]$) coherence continues to precess.
after the mixing the populations are:

$$
\begin{aligned}
& -\mathbf{I}_{\mathrm{z}} \mathrm{a}_{\mathrm{II}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& -\mathbf{I}_{\mathrm{z}} \mathrm{a}_{\mathrm{IS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \\
& -\mathbf{S}_{\mathrm{z}} \mathrm{a}_{\mathrm{SS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& -\mathbf{S}_{\mathrm{z}} \mathrm{a}_{\mathrm{SI}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)
\end{aligned}
$$

and the zero-quantum coh. term is

$$
\left[\mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{x}}-\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{y}}\right]\left[\cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right)-\cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)\right] \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)
$$

$$
\hat{\mathrm{H}}=\pi / 2\left(\hat{\mathrm{I}}_{\mathrm{x}}+\check{\mathrm{S}}_{\mathrm{x}}\right)
$$

$$
\downarrow 90^{\circ}{ }_{x} \text { memo. }=\cos (\pi / 2)=0, \sin (\pi / 2)=1
$$

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{y}} \mathrm{a}_{\mathrm{II}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& \mathbf{I}_{\mathrm{y}} \mathrm{a}_{\mathrm{IS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \\
& \mathbf{S}_{\mathrm{y}} \mathrm{a}_{\mathrm{SS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{II}} \mathrm{t}_{1}\right) \\
& \mathbf{S}_{\mathrm{y}} \mathrm{a}_{\mathrm{SI}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& {\left[\mathrm{I}_{\mathrm{z}} \mathrm{~S}_{\mathrm{x}}-\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\mathrm{z}}\right]\left[\left(\cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right)-\cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right)\right] \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)\right.}
\end{aligned}
$$

The unwanted zero-quantum diagonal and cross-peaks $\left(\mathrm{I}_{z} \mathrm{~S}_{\mathrm{x}}-\mathrm{I}_{\mathrm{x}} \mathrm{S}_{\mathrm{z}}\right)$ (both anti-phased and dispersive) can removed at this point.
a. in small molecule several spec. are recorded with diff. mixing time and coadded.
b. in large molecule they can be ignored because \rightarrow zero-quant. relaxation is fast
-> large linewidth with antiphased disp. line shape cancel each other.

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{y}} \mathrm{a}_{\mathrm{II}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& \mathbf{I}_{\mathrm{y}} \mathrm{a}_{\mathrm{IS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \\
& \mathbf{S}_{\mathrm{y}} \mathrm{a}_{\mathrm{SS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\text {IS }}^{\mathrm{t}_{1}}\right) \\
& \mathbf{S}_{\mathrm{y}} \mathrm{a}_{\mathrm{SI}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { the diagonal } \mathbf{I}_{\mathrm{y}} \text { term during } \mathrm{ACQ} \Rightarrow \quad+\mathbf{I}_{\mathrm{y}} \mathrm{a}_{\mathrm{II}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& -2 \mathbf{I}_{x} \mathbf{S}_{\mathrm{z}} \mathrm{a}_{\mathrm{II}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& -\mathbf{I}_{\mathrm{x}} \mathrm{a}_{\mathrm{II}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& -2 \mathbf{I}_{\mathrm{y}} \mathbf{S}_{\mathrm{z}} \mathrm{a}_{\mathrm{II}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& \text { the diagonal } \mathbf{S}_{\mathrm{y}} \text { term during } \mathrm{ACQ} \Rightarrow \quad+\mathbf{S}_{\mathrm{y}} \mathrm{a}_{\mathrm{SS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& -2 \mathbf{S}_{\mathrm{x}} \mathbf{I}_{\mathrm{z}} \mathrm{a}_{\mathrm{SS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& -\mathbf{S}_{\mathrm{x}} \mathrm{a}_{\mathrm{SS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& -2 \mathbf{S}_{y} \mathbf{I}_{\mathrm{z}} \mathrm{a}_{\mathrm{SS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& \text { off-diagonal } \mathbf{I}_{\mathrm{y}} \text { term during } \mathrm{ACQ} \Rightarrow \quad+\mathbf{I}_{\mathrm{y}} \mathrm{a}_{\mathrm{IS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& -2 \mathbf{I}_{\mathrm{X}} \mathbf{S}_{\mathrm{z}} \mathrm{a}_{\mathrm{IS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& -\mathbf{I}_{\mathrm{x}} \mathrm{a}_{\text {IS }} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& -2 \mathbf{I}_{\mathrm{y}} \mathbf{S}_{\mathrm{z}} \mathrm{a}_{\text {IS }} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& \text { off-diagonal } \mathbf{S}_{\mathrm{y}} \text { term during } \mathrm{ACQ} \Rightarrow \quad+\mathbf{S}_{\mathrm{y}} \mathrm{a}_{\mathrm{SI}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right) \\
& -2 \mathbf{S}_{\mathrm{x}} \mathbf{I}_{\mathrm{z}} \mathrm{a}_{\mathrm{SI}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& -\mathbf{S}_{\mathrm{x}} \mathrm{a}_{\mathrm{SI}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& -2 \mathbf{S}_{\mathrm{y}} \mathbf{I}_{\mathrm{z}} \mathrm{a}_{\mathrm{SI}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \sin \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right)
\end{aligned}
$$

memo 1: put the receiver on x
therefore only the four x term remain

$$
\begin{aligned}
& -\mathbf{I}_{\mathrm{x}} \mathrm{a}_{\mathrm{II}} \cos \left(\Omega_{\mathrm{I}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& -\mathbf{S}_{\mathrm{x}} \mathrm{a}_{\mathrm{SS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{S}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& -\mathbf{I}_{\mathrm{x}} \mathrm{a}_{\mathrm{IS}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\text {IS }} \mathrm{t}_{2}\right) \\
& -\mathbf{S}_{\mathrm{x}} \mathrm{a}_{\mathrm{SI}} \cos \left(\Omega_{\mathrm{S}} \mathrm{t}_{1}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{1}\right) \sin \left(\Omega_{\mathrm{I}} \mathrm{t}_{2}\right) \cos \left(\pi \mathrm{J}_{\mathrm{IS}} \mathrm{t}_{2}\right)
\end{aligned}
$$

memo 2: $\sin (A) \cos (B)=1 / 2[\sin (A+B)+\sin (A-B)]$

$$
\cos (A) \cos (B)=1 / 2[\cos (A+B)+\cos (A-B)]
$$

therefore
$-1 / 4 \mathbf{I}_{\mathrm{x}} \mathrm{a}_{\mathrm{II}}\left[+\cos \left\{\left(\Omega_{\mathrm{I}}+\pi \mathrm{J}_{\text {IS }}\right) \mathrm{t}_{1}\right\}+\cos \left\{\left(\Omega_{\mathrm{I}}-\pi \mathrm{J}_{\text {IS }}\right) \mathrm{t}_{1}\right\}\right]\left[+\sin \left\{\left(\Omega_{\mathrm{I}}+\pi \mathrm{J}_{\text {IS }}\right) \mathrm{t}_{2}\right\}+\sin \left\{\left(\Omega_{\mathrm{I}}-\pi \mathrm{J}_{\text {IS }}\right) \mathrm{t}_{2}\right\}\right]$ $-1 / 4 \mathbf{S}_{\mathrm{x}} \mathrm{a}_{\mathrm{II}}\left[+\cos \left\{\left(\Omega_{\mathrm{S}}+\pi \mathrm{J}_{\text {IS }}\right) \mathrm{t}_{1}\right\}+\cos \left\{\left(\Omega_{\mathrm{S}}-\pi \mathrm{J}_{\text {IS }}\right) \mathrm{t}_{1}\right\}\right]\left[+\sin \left\{\left(\Omega_{\mathrm{S}}+\pi \mathrm{J}_{\text {IS }}\right) \mathrm{t}_{2}\right\}+\sin \left\{\left(\Omega_{\mathrm{S}}-\pi \mathrm{J}_{\text {IS }}\right) \mathrm{t}_{2}\right\}\right]$
$-1 / 4 \mathbf{I}_{\mathrm{x}} \mathrm{a}_{\mathrm{IS}}\left[+\cos \left\{\left(\Omega_{\mathrm{S}}+\pi \mathrm{J}_{\text {IS }}\right) \mathrm{t}_{1}\right\}+\cos \left\{\left(\Omega_{\mathrm{S}}-\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{1}\right\}\right]\left[+\sin \left\{\left(\Omega_{\mathrm{I}}+\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{2}\right\}+\sin \left\{\left(\Omega_{\mathrm{I}}-\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{2}\right\}\right]$
$-1 / 4 \mathbf{S}_{\mathrm{x}} \mathrm{a}_{\mathrm{SI}}\left[+\cos \left\{\left(\Omega_{\mathrm{I}}+\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{1}\right\}+\cos \left\{\left(\Omega_{\mathrm{I}}-\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{1}\right\}\right]\left[+\sin \left\{\left(\Omega_{\mathrm{S}}+\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{2}\right\}+\sin \left\{\left(\Omega_{\mathrm{S}}-\pi \mathrm{J}_{\mathrm{IS}}\right) \mathrm{t}_{2}\right\}\right]$
the following terms can be found

$$
\begin{aligned}
& -\mathbf{I}_{\mathrm{x}} \mathrm{a}_{\mathrm{II}}[+. .+. .+. .+. .] \text { at } \Omega_{\mathrm{I}}, \Omega_{\mathrm{I}} \\
& -\mathbf{I}_{\mathrm{x}} \mathrm{a}_{\mathrm{IS}}[+. .+. .+. .+. .] \text { at } \Omega_{\mathrm{S}}, \Omega_{\mathrm{I}} \\
& -\mathbf{S}_{\mathrm{x}} \mathrm{a}_{\mathrm{SS}}[+. .+. .+. .+. .] \text { at } \Omega_{\mathrm{S}}, \Omega_{\mathrm{S}} \\
& -\mathbf{S}_{\mathrm{x}} \mathrm{a}_{\mathrm{SI}}[+. .+. .+. .+. .] \text { at } \Omega_{\mathrm{I}}, \Omega_{\mathrm{S}}
\end{aligned}
$$

cos is absorptive (a) in t_{1}
sin is absorptive (a) in t_{2}

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{x}} \mathrm{a}_{\mathrm{II}}[+\mathrm{a} . .+\mathrm{a} . .+\mathrm{a} . .+\mathrm{a} . .] \text { at } \Omega_{\mathrm{I}}, \Omega_{\mathrm{I}} \\
& \mathbf{I}_{\mathrm{x}} \mathrm{a}_{\mathrm{IS}}[+\mathrm{a} . .+\mathrm{a} . .+\mathrm{a} . .+\mathrm{a} . .] \text { at } \Omega_{\mathrm{S}}, \Omega_{\mathrm{I}} \\
& \mathbf{S}_{\mathrm{x}} \mathrm{a}_{\mathrm{SS}}[+\mathrm{a} . .+\mathrm{a} . .+\mathrm{a} . .+\mathrm{a} . .] \text { at } \Omega_{\mathrm{S}}, \Omega_{\mathrm{S}} \\
& \mathbf{S}_{\mathrm{x}} \mathrm{a}_{\mathrm{SI}}[+\mathrm{a} . .+\mathrm{a} . .+\mathrm{a} . .+\mathrm{a} . .] \text { at } \Omega_{\mathrm{I}}, \Omega_{\mathrm{S}}
\end{aligned}
$$

If $\mathrm{J}_{\text {IS }}=0$ (through bond coupling ignored) then

The sign of the peaks is determined by the mix. coeff. : $\mathrm{a}_{\mathrm{II}}, \mathrm{a}_{\mathrm{IS}}, \mathrm{a}_{\mathrm{SI}}, \mathrm{a}_{\mathrm{SS}}$

Summary: ${ }^{1} \mathbf{H}-{ }^{1} \mathbf{H}$ NOESY

the raise of an off-diagonal peak

NOESY-with bipolar gradient, water flip-back pulse and -3-9-19:
\uparrow Net magnetization form $\mathrm{H}_{2} \mathrm{O}$
(on-resonance)
\uparrow Net magnetization form protein (off-resonance)

bipolar gradient taking care of water during evolution: a pair of gradients (typically of low power e.g. 0.5%) of increasing length covering the overall time of evolution (t 1). Radiation dumping is minimized since the otherwise bulk water, as well as any other signals, are dephased and rephased in a symmetric manner during evolution. (No uniform (big) water, no radiation dumping occurs.)

Gradient "a": dephases all coherences of the x, y plane (general clean up before bringing magnetization back into the x, y palne)
Gradient " \mathbf{b} " is that of the "standard" watergate.
The water flip back pulse The on-resonance magnetization of $\mathrm{H}_{2} \mathrm{O}$, is first selectively rotated into the transverse plane (along y) by the shaped low power $90-\mathrm{x}$, and subsequently returned along z by the non-selective hard 90x. All magnetization related to off-resonance signals are "simply" rotated to -y axis.
The 3-9-19 watergate or binominal water suppression is to remove water before acquisition

A szekvenciális hozzárendelés és a szerkezetszámolás alapja a nukláris Overhauser- effektus (NOE)

Távolság jellegű adatok

Fehérje modul ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{-}^{\mathbf{1}} \mathbf{H}$ NOESY spektruma

