SENSITIVITY OF AN EXPERIMENT AND THE SIZE OF THE MOLECULE

observation: some experiment (*e.g.* COSY, DQF-COSY) don't work for large molecules $(M \cong 10 \text{ kDalton})$ although efficient for smaller ones ($M \cong 1 \text{ kDalton}$). Why is that?

answer: Their T_2 values are different, namely:

- for M \cong 1 kD the typical T₂ \cong 1-2 s,
- for M \cong 10 kD the typical T₂ \cong 10-20 ms.

explanation: relaxation* time (mainly T_2) is to be compared with the time required for the "build up" of the off-diagonal signal intensity. (A comparison on the absolute time scale.)

1. T_2 relaxation

1.1. relative (or T_2) time scale

Due to relaxation the signal intensity decays according to $I(t)=A*exp(-t/T_2)$ [[t]]/A

1.2. absolute time scale

Since their spin-spin relaxation is different the decay of the signal intensities is different.

For a small molecule with large $T_2 \{2 \text{ s}\}$ there is practically no decay due T_2 relaxation during the first 100 ms {A*exp(-0.1/2) \cong 95.1%}

For a large molecule with small T_2 {20 ms} there is practically no signal after the first 100 ms.

2. the build up of the signal intensity according to t_1 (t₂ during ACQ is unimportant)

In homonuclear experiments the ^{1,3}J type-couplings have -high conformational dependence, -an average value of 6 Hz, -and builds up with *sin* or *cos* modulation. e.g. in a 2D-COSY diagonal peak: $+I_x \sin(\Omega_I t_1) \cos(\pi J_{IS} t_1) \cos(\Omega_I t_2) \cos(\pi J_{IS} t_2)$ off-diagonal peak: $+I_y \sin(\Omega_S t_1) \sin(\pi J_{IS} t_1) \cos(\Omega_I t_2) \sin(\pi J_{IS} t_2)$ J_{IS} is cos modulated { $cos(\pi J_{IS}t_1)$ } in the diagonal peak and J_{IS} is sin modulated { $sin(\pi J_{IS}t_1)$ } in the off-diagonal peak

At t=0 the cos is at its maximum and at $\pi/2$ it is 0, so the intensity of the diagonal decays. At t=0 the sin is 0 and its maximum is at $\pi/2$ so the off-diagonal signal is building up.

For a small molecule with large T₂ relaxation:

For a large molecule with serious T2 relaxation the shape of the interferrogram:

final explanation:

In a **COSY-type experiments** we observe the following *memo:* (receiver on x)

 $\begin{array}{ll} \text{diagonal term} & +\mathbf{I}_{x}\sin(\Omega_{I}t_{1})\cos(\pi\mathbf{J}_{IS}\mathbf{t}_{1})\cos(\Omega_{I}t_{2})\cos(\pi\mathbf{J}_{IS}\mathbf{t}_{2}) \\ \text{off-diagonal term} & +\mathbf{I}_{x}\sin(\Omega_{S}t_{1})\sin(\pi\mathbf{J}_{IS}\mathbf{t}_{1})\cos(\Omega_{I}t_{2})\sin(\pi\mathbf{J}_{IS}\mathbf{t}_{2}) \end{array}$

comment: so for a mol. with a fast T_2 relaxation (T_2 small, broad linewidth [*e.g.* protein]) the decay of the signal is fast while the build up of the sin modulated coupling is slow. In conclusion, the off-diagonal peak **can't be detected**. For the same reason the diagonal is there.

The RELAY is similar to COSY since:

diagonal term $+\mathbf{I}_{x} \sin(\Omega_{I}t_{1})\cos(\pi \mathbf{J}_{IS}t_{1})\cos(\Omega_{I}t_{2})\cos(\pi J_{IS}t_{2})$ off-diagonal term $+\mathbf{I}_{x} \alpha \sin(\Omega_{M}t_{1})\sin(\pi J_{SM}t_{1})\cos(\Omega_{I}t_{2})\sin(\pi J_{IS}t_{2})$

The DQF-COSY experiment: both the diagonal and the off-diagonal could vanish. diagonal term $-1/2\mathbf{I}_x \cos(\Omega_I t_1) \sin(\pi \mathbf{J}_{IS} t_1) \sin(\Omega_I t_2) \sin(\pi \mathbf{J}_{IS} t_2)$ off-diagonal term $-1/2\mathbf{I}_x \cos(\Omega_S t_1) \sin(\pi \mathbf{J}_{IS} t_1) \sin(\Omega_I t_2) \sin(\pi \mathbf{J}_{IS} t_2)$

Resolution, self-cancellation, fine structure of 2D-experiments

e.g. 2D-DQF-COSY of a Gly residue

- For a molecule with large line width (protein) the fine structure could be lost. (*e.g.* the passive coupling ${}^{3}J_{H1,H2}$ is not observed)

- If the number of increments are too small in t1 (*e.g.* t1,max.= 128*t1dw instead of t1,max=512*t1dw) then self-cancellation can occur:

