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Introduction to Theoretical organic Chemistry  
Lecture 5. 
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1.2.7 Basis Functions 

Throughout the years some magic has been attached to everything that is theoretical in 
chemistry and by now a certain amount of mythology has evolved around Quantum Chemistry as it 
may be applied to study organic problems. For this reason some demythologization is in order. This is 
hoping to be archived in five brief statements. 

Statement no.1 The term „orbital” is a synonym for the term „one-electron” function (OEF). 
Statement no.2 A single-centred OEF is synonymous with „Atomic Orbital (AO)”. A multi 

centred OEF is synonymous with „Molecular Orbital (MO)”. The single and multi centred nature of 
these one-electron functions are illustrated in Figure 1.2.7—1 

AO MO  
Figure 1.2.7—1 A schematic representation of single (AO) and multi (MO) centred one-electron 
functions. 

An orbital (AO or MO) has as much to do with physical and chemical reality as the following 
functions do 
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 1.2.7—1. eq. 
Nevertheless, these functions (AO and MO) enable us to construct molecular wave functions 

that may be used to compute molecular electron density and molecular properties which are 
manifestations of physical and chemical realities. It is axiomatic, therefore, that these latter computed 
quantities must have a one-to-one correspondence to the corresponding physical properties of the 
molecule as determined experimentally 

Statement no.3 There are three ways to express a mathematical function: 

• Explicitly in analytic form 

xexf =)(

  1.2.7—2. eq. 
the hydrogen-like AO are usually expressed in this form. 

• As a table of numbers 
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x f(x) 
0.0 1.000 
0.1 1.105 
0.2 1.221 
M  M  

The Hartree-Fock type AO computed for numerous atoms are usually expressed in this 
numerical form. 

• In the form of an expansion 
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 1.2.7—3. eq. 
which is analogous to the expression of MO in terms a set of AO: 

K++++= 33221100 ηηηηφ CCCC

  1.2.7—4. eq. 

Statement no. 4. The generation of MO(φ) from AO(η) is equivalent to the transformation of 
an N-dimensional vector space to another N-dimensional vector space where {η}is the original set of 
non-orthogonal functions. After orthogonalization of the non-orthogonal AO basis set {η} the 
orthogonal set {χ} is rotated to the another orthogonal set{φ}. This overall process is illustrated in 
Figure 1.2.7—2 
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Figure 1.2.7—2 Two dimensional Vector Model of AO→MO transformation 
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Statement no.5. There are certain differences between the shape of numerical Hartree-Fock 

atomic orbitals (HF-AO), the analytic Slater type orbitals (STO) and the analytic Gaussian type 
functions(GTF),however , these differences are irrelevant to the final results as the MO can be 
expanded in terms of any of these complete sets of functions to any desired degree of accuracy. 

Atomic orbital basis sets 

The generation of MO from AO requires the generation and transformation of the Fock matrix 
into diagonal form. The elements of the Fock matrix are assembled from integrals in the following 
fashion: 
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 1.2.7—5. eq. 

Where the first term is a one-electron integral and the latter terms are two-electron integrals 
having the following forms. 
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 1.2.7—7. eq. 
As the running indices i, j, k, l, range from 1 to N therefore the number of one – and two-

electron integrals are calculable by the following formula 

2
)1(:integralselectron -1 ofNumber ++

=
NNp

 

2
)1(:integralselectron -2 ofNumber +

=
ppq

 The table below illustrates how rapidly the number of one– and two–electron integrals grows 
with the basis set size N. 
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Table 1.2.7-1 The increase of the number of one-electron (p) and two electron (q) integrals with 
increasing basis set size (N) 

N P q 
1 1 1 
10 55 1,540 
50 1,275 814,725 
100 5.050 12,751,250 
150 11,325 64,133,475 
200 20100 202,015,050 
300 45150 1,019,261,250 

For the atomic orbital {η}two types of analytic functions are used in molecular computations. 

• 1) Slater-type orbital (STO) or exponential type functions.(ETF). 

• 2) Gaussian-type orbital (GTO) or Gaussian-type function (GTF). 

Some characteristics of these two sets of function are illustrated in Figure 1.2.7—3 As far as 
STO are concerned the integral evaluation is very slow but a relatively small N gives farly accurate 
results. 

STO or ETF
No cups as 
r        0

Decays too rapidly as
r

GTO or GTF

ηSTO=polynomial. e-ξr ηGTF=polynomial. e-αr2
 

Figure 1.2.7—3 Some characteristics of STO and GTF 

The GTF are more popular as it is possible to compute the integrals over Gaussian very quickly, 
but only relative large N gives accurate results. These AO basis sets need to be optimized for molecular 
calculation. This may be achieved by minimizing the electronic energy with respect to all orbital 
exponents. Figure 1.2.7—4 illustrates the simulation for a two-orbital case: 
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Figure 1.2.7—4 Electronic Energy surface as a function of orbital exponents {α} 

Sometimes STO are expanded in terms of GTF or, in other words, a GTF basis set is contracted 
to a set of STO. The contraction of a set of three Gaussian-type functions to single Slater function used 
to be very popular (STO-3G): 

GTF
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  1.2.7—9. eq. 
This means that the total number of integrals to be stored can be reduced by contraction as 

illustrated bellow: 
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 1.2.7—10. eq. 
Such the contraction of basis set reduces the size of the Fock matrix which will be more 

manageable to find the solution. 
In the above case 9 integrals have been evaluated, but only their sum total, that is, a single 

integral, is stored. The STO-3g basis function in Figure 1.2.7—5 is a contracted Gaussian consisting of 
three primitive Gaussian each of which has a contraction coefficient (0.4446, 0.5353 and 0.1543). 
Typically, an ab initio basis function consist of a set of primitive Gaussians bundled together with a set 
of contraction coefficient. 
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 1.2.7—12. eq. 
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 Figure 1.2.7—5 Comparison of Slater and STO-3G functions for hydrogen. The Slater function 
shown is the most appropriate one for hydrogen in a molecular environment. 

The Basic advantage of Gaussian type functions is due to the fact that the product of any two 
Gaussian is also a Gaussian with its centre on a line between the centres of the two original Gaussian 
functions, as illustrated in Figure 1.2.7—6 
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 Figure 1.2.7—6 An illustration of the theorem that the product of two Gaussians is also a 
Gaussian. 

Consequently, all integrals have explicit analytical expressions and may be evaluated rapidly. A 
similar theorem does not exist for STO. The principal disadvantages of GTF are their smooth behaviour 
(lack of cusp) at the nucleus and their too rapid (by 

2re− rather than by re−  ) decrease at large distances 
(cf .Figure 1.2.7—7). This improper asymptotic behaviour requires the use of a larger number of GTF 
than STO for equivalent accuracy. 

 
Figure 1.2.7—7 A comparsion of a 1s-STO and 1s-GTF as a function of r. 
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However, the much greater speed per integral evaluation in terms of GTF as opposed to STO 
allows for this greater total number of integrals. Numerical values of the exponents and contraction 
coefficients are illustrated for selected basis set in the tables given below. 

Table 1.2.7-2 XII-5 STO-3G and STO-4G minimal basis sets for H and C 
 STO STO-3G STO-4G 
  Exponents 
H 1s 3.42525D+00 8.02142D+00 
  6.23913D-01 1,46782D+00 
  1.68855D-01 4,07777D-01 
   1.35337D-01 
    
C 1s 7.16168D+01 1.67716D+02 
  1.30451D+01 3,06899D+01 
  3.53051D+00 8,52600D+00 
   2.82970D+00 
    
  2,94125D+00 6.87386D+00 
  6,83483D-01 1,48804D+00 
  2.22290D-01 4,83819D-01 
   1.85818D-01 
    
  Contraction Coefficients 
H,C 1s 1.54329D-01 5.67524D-02 
  5.35328D-01 2,60141D-01 
  4.44635D-01 5,32846D-01 
   2.91625D-01 
    
C 2s -9.99672D-02 -6.22071D-02 
  3.99513D-01 2.97680D-05 
  7.00115D-01 5.58855D-01 
   4.97767D-01 
    
C 2p 1.55916D-01 4.36843D-02 
  6.07684D-01 2.86379D-01 
  3.91957D-01 5.83575D-01 
   2.46313D-01 
*nαs = nαp orbital exponent constraint 
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 Table 1.2.7-3 Split valence shell 4-31G Gaussian basis sets for H and C 

 

1.2.8 Geometrty optimization on PEF 

There are three types of internal motions of molecules: stretch, bend and torsion as illustrated by 
Figure 1.2.8—1. The torsion is a periodic motion even if its periodicity low so that it repeats itself only 
after a 360° rotation. The bending motion usually governs a double-well potential. If the bonds that 
undergo bending motion are attached to N or O then the barrier to inversion is quite low (from a few to 
a few tens kcal/mole) but if it involves C then the inversion potential is very high as the inversion 
would pass through a planar carbon. 
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 Figure 1.2.8—1 Three types of potentials associated with three internal modes of motion. 

If we knew the potential curves that are characteristic to a given molecular system then we 
could determine the whereabouts of the minimum energy points that in fact correspond to the 
equilibrium geometry. Unfortunately, these potential functions are not only unknown but they change 
from molecule to molecule and from bond to bond. However, we do know that they may be 
approximated, near any of their minima by same quadratic potential, as illustrated by Figure 1.2.8—2, 
since quadratic and true functions osculate at the minimum. 

 
Figure 1.2.8—2 The osculation of the quadratic and the true functions at the minimum as 
illustrated for a bond stretch. 

The quadratic function is the traditional Hooke's law: 
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 1.2.8—1. eq. 

where G, the second derivative of E with respect to x, is the force constant usually denoted by k 
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 1.2.8—2. eq. 

The minimum energy point is denoted by Em and xm in equation 1.2.8—3. eq.as well as in 
Figure 1.2.8—2. For a multi-dimensional problem the generalized Hooke's law may be written as 
follows: 
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 1.2.8—4. eq. 
where is the(x-xm) displacement vector and G, the Hessian matrix, collects all diagonal and off-

diagonal or interaction force constants  
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 1.2.8—5. eq. 
For a two dimensional case the situation is illustrated in terms of a schematic energy contour 

diagram inFigure 1.2.8—3. This figure also shows that the internal coordinates {xi} are not the same as 
the normal coordinates {yi}. 
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 Figure 1.2.8—3 A schematic illustration of a two-dimensional potential energy surface: E= 
E(x1,x2) in terms of energy levels contours. Note that the normal coordinates {yi} are different 
from the internal coordinates {xi} 

Molecular geometry optimization involves the finding of the minimum energy (Em) point or in 
other words locating xl

m, x2
m; . . .This can most effectively be done by evaluating the gradient vector: 
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 1.2.8—6. eq. 

and searching for the point where the gradient vector is a zero vector 

( ),.....0,0=g

 
 1.2.8—7. eq. 

since at the minimum the gradient vanishes. This is illustrated for the minima and higher order 
critical points for one- and two-dimensions in Figure 1.2.8—5 and Figure 1.2.8—6 respectively. Note 
that force (F) exerted on the atomic nuclei is the negative of the energy gradient vector: 
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ggradEF −=−=

 

0 > tan g en t tan g en t > 0

F F g rad  Eg rad  E

E

x

  Figure 1.2.8—4 The force (F) points toward the minimum i.e. toward the equilibrium position 
while the gradient (grad E) points away from the minimum. Thus F=-grad E 

 
 Figure 1.2.8—5 Characteristics of minima and maxima of a potential energy curve, (Note that g 
is the gradient, k is the force constant of the potential energy function and λ is the index of the 
critical point in question. 
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 Figure 1.2.8—6 Three types of critical points of a potential energy surface and their 
characteristics in terms of second partial derivatives. (Note that the index (λ) of a critical point is 
the number of negative second derivatives.) 

Even though the gradient vector provides a powerful tool in locating the minimum we always 
carry out the multi-dimensional optimization as a sequence of one-dimensional optimizations. The one-
dimensional optimization, however, involves a quadratic or parabolic interpretation. 

Parabolic interpolation 

Basic procedure for one-dimension 

First of all, we must choose an initial point: x0 and a distance: d which lead to `three equidistant 
points (x0 + d), x0, (x0-d). Secondly we need to evaluate E(x) at the three equidistance points leading to 
three energy values E+, E0 and E- Thirdly, we locate the minimum energy (Em) point which is located at 
xm. If xm falls within the range x0 - d to x0 + d, and if d is sufficiently small then quit. Of course we 
want to avoid extrapolation. Alternatively we should get enough (3) equidistant points to bracket xm

(1), 
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and predetermine xm
(2). This may involve using some of the original points again if xm

(1) was close to 
x0. 

Minimum of a parabola 

A general equation of a parabola may be written as: 

cbxaxxE ++= 2)(

  1.2.8—8. eq. 
and the function may be evaluated at three equidistant points (x0 - d), x0, (x0 + d) 
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  1.2.8—9. eq. 
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  1.2.8—10. eq. 
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  1.2.8—11. eq. 
Expanding 1.2.8—9. eq., 1.2.8—10. eq., and 1.2.8—11. eq. gives: 

cbdbxadadxaxE +++++=+ 0
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  1.2.8—12. eq. 

cbxaxE ++= 0
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  1.2.8—13. eq. 
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  1.2.8—14. eq. 
Adding 1.2.8—12. eq. and 1.2.8—14. eq. together we obtain: 

cbxadaxEE 2222 0
22

0 +++=+ +−

  1.2.8—15. eq. 
Subtracting from 1.2.8—15. eq. twice of equation 1.2.8—13. eq. leads to 1.2.8—16. eq. 
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  1.2.8—16. eq. 
This may be solved for the unknown parameters: a 
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 1.2.8—17. eq. 

We may obtain parameter b, as 1.2.8—19. eq., after subtracting 1.2.8—14. eq., from 1.2.8—12. 
eq. 

bdadxEE 24 0 +=− −+

  1.2.8—18. eq. 
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 1.2.8—19. eq. 

Finally parameter c may be obtained from equation 1.2.8—10. eq. 
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2
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  1.2.8—20. eq. 
The location of minimum, where x = xm may be achieved by- setting the gradient equal to zero 
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 1.2.8—21. eq. 
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 1.2.8—22. eq. 

After substituting to 1.2.8—22. eq. the values of a and b from equations 1.2.8—17. eq. and 
1.2.8—19. eq. respectively we obtain: 
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 1.2.8—23. eq. 

It is convenient to introduce the following notations: 
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−+ −= EEt

  1.2.8—24. eq. 

02EEEs −−= −+

  1.2.8—25. eq. 
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 1.2.8—26. eq. 

This last equation resulted from 1.2.8—23. eq.. The three parameters a (from 1.2.8—17. eq.), b 
(from 1.2.8—19. eq.) and c (from 1.2.8—20. eq.]) may be rewritten in terms of t and s. 
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 1.2.8—27. eq. 
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  1.2.8—29. eq. 
The energy at xm may be written according to 1.2.8—8. eq. as: 

cbxaxxE mmm ++= 2)(

  1.2.8—30. eq. 
using 1.2.8—27. eq., 1.2.8—28. eq. and 1.2.8—29. eq. the above expression may be rewritten 

as follows:  
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 1.2.8—31. eq. 
Finally, the deviation (xm – x0 ) may be expressed form equation 1.2.8—26. eq. 
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 1.2.8—32. eq. 

Substituting 1.2.8—32. eq. Into 1.2.8—31. eq. we obtain: 
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 1.2.8—33. eq. 

which simplifies to 1.2.8—34. eq. 
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 1.2.8—34. eq. 

This predicted E(xm) is the minimum energy of the quadratic function. This value can be 
compared to E(xm) calculated from the function. Note also that an estimate of the force constant, the 
parameter a, is readily obtained. 
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 1.2.8—35. eq. 

As it is clear form Figure 1.2.8—5 

for a minimum a>0  

for a maximum a<0  

Procedure for N-dimensions 

First of all, from the start position, one should find the minimum along the first direction(x1). 
Subsequently, one must cycle through the remaining independent variables, (x2, x3, ...:, xn), fitting 
parabolas to sets of 3 points in each direction in turn. To reach M1, the best point after the lst cycle 
through all the parameters. An example with 2 independent variables, E = E(xl,x2) is graphically 
illustrated by Figure 1.2.8—7. If mi and mi-1 are sufficiently close together then quit. Alternatively the 
use Mi as the new start position, and continue. As the optimization progresses, it is desirable to cut 
down the step size d 
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 Figure 1.2.8—7 Typical parabolic interpolation optimization of E(xl,x2) (Note that after the start 
position, mi: end of cycle i, m: true minimum.) 

While this type of sequential optimization along, one internal coordinate before the next one, is 
a working method but it is rather pedestrian. Also, if the variables are coupled, as they very often are, 
the method is very inefficient as illustrated by Figure 1.2.8—8 

 
 Figure 1.2.8—8 A schematic illustration of the inefficiency of sequential optimization method 
along one of the independent coordinates at a time is shown for a strongly coupled system. 
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Characteristics of potential energy surface critical points 

The force constant or the Hessian matrix is a real symmetric matrix 1.2.8—5. eq. In diagonal 
form the diagonal elements are the eigen values of the Hessian. Sometime all of these eigen values are 
positive, other times some of them are negative while some of them are positive and other times all of 
the eigen values are negative. Equation 1.2.8—36. eq. shows a general case, for a particular critical 
point, where the first λ diagonal elements are negative and the rest of them are positive. Of course; λ 
may assume values between 0 and n. 
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 1.2.8—36. eq. 

The parameter λ; the number of negative eigen values, is called the index of the particular point. 
For a minimum λ = 0, that is all diagonal elements of [302] are positive. For a saddle point, 
corresponding to a chemical transition state λ = 1. For a maximum λ = n. For a one- and a two-
dimensional case this is illustrated by Figure 1.2.8—5 and Figure 1.2.8—6, respectively. Table 1.2.8-1 
summarizes the situation up to four independent variables. 

 Table 1.2.8-1 The variety of critical point types up to four independent variables. 
 Number of independent variables (n) 
Index 1a 2b 3c 4c 
λ=0 min min min Min 
λ=1 max 1°saddle 1°saddle 1°saddle 
λ=2  Max 2°saddle 2°saddle 
λ=3   Max 3°saddle 
λ=4    Max 
a) potential energy curve    
b) potential energy surface    
c) potential energy hyper surface    

Since the fundamental frequency is related to the square root of the force constant 

µπ
ν k

2
1

=

 
 1.2.8—37. eq. 

Or , in a multidimensional case , for the m-th diagonal element of 1.2.8—36. eq. 
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 1.2.8—38. eq. 

Therefore, the first λ eigenvalues of 1.2.8—36. eq. correspond to imaginary frequency. For 
m>λ we obtain 1.2.8—38. eq. 
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 1.2.8—39. eq. 

At the end of the optimization it is advisable to check the order (λ) of the critical point. If λ = 0 
then we can rest assured that the critical point in our optimization we have converged to is indeed a 
minimum. 

General introduction to gradient methods of optimization 

Methods for unconstrained optimization of a variables (n dimensions) are designed to produce 
the answer in a finite number of steps when the function, f(x), is quadratic. It is then hoped that the 
method will be efficient on more general functions, but especially those with slowly varying second 
derivatives. 

For a general function the notation f(x) is used rather than the E(x) specified before. This is 
done to emphasize that the method is applicable to any routine differentiable function.  

At the minimum or very close to it the functions has a quadratic form, in addition to the 
constant f(xm ), without a linear term. This function may be written, as follows: 

)()(
2
1)()( † mmm xxGxxxfxf −−+=

 
 1.2.8—40. eq. 

However, some distance away from the minimum at point xk the inclusion of a linear term is 
advisable (c.f. Figure 1.2.8—9) as specified by the next equation 



Fund.Theor.Org.Chem..  Lecture 5 

24/27 

)())(()(
2
1)( †† k

k
kkk

k xfgxxxxGxxxf +−−−=

 
 1.2.8—41. eq. 

 
 Figure 1.2.8—9 A linear segment that takes the minimum energy point from xm to xk. 

The components of the gradient vector g(x) are the first partial derivatives of f(x) written in a 
fashion that is analogous to 1.2.8—6. eq.: 
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 1.2.8—42. eq. 

In general, the objective function f(x) is 
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 1.2.8—43. eq. 

or in Dirac notation 

><+><+= xGxaxfxf mk 2
1)(

 
 1.2.8—44. eq. 

Where 
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 1.2.8—45. eq. 

and the Hessian matrix" is constructed according to 1.2.8—5. eq. The gradient of f(x), g(x) is: 

∑+=
j

jijii xGaxg )(

 
 1.2.8—46. eq. 

or 

>+>>= xGag

  1.2.8—47. eq. 
where gi(x) is the i'th component of |g>. At the extremum of f, 

0>=g

  1.2.8—48. eq. 
Letting |xm> be the coordinates of the extremum. From 1.2.8—47. eq. we may express |a> 

0>=+> mxGa

  1.2.8—49. eq. 
Therefore  

>−>= − aGxm 1

 
 1.2.8—50. eq. 

From 1.2.8—47. eq., substitute for |a>=|g>-G|x> 
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 1.2.8—51. eq. 

>−>>= − gGxxm
1

  1.2.8—52. eq. 
Which is the Newton (or Newton-Raphson ) equation. Given exact G and |g>, the minimum can 

be found in one step for a quadratic function. Methods which do not use an exact G often use an 
approximate matrix H (a positive definite symmetric matrix) such that 
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  1.2.8—53. eq. 
In these cases, the step size equation 1.2.8—52. eq. is usually written: 

>−>>=+ )()()1( i
i

ii gHxx λ

 
 1.2.8—54. eq. 

where λi is to be determined. Note that |x(i+1)> will not necessarily be the extremum desired for 
any value of λi, as H is not exact. Besides if f is not quadratic, 1.2.8—51. eq. is not valid anyways so 
1.2.8—54. eq. is always used in practice. Such methods, based on 1.2.8—54. eq., are called quasi-
Newton methods.  

Steepest descents 

A very simple optimization method called steepest descents arises from 1.2.8—54. eq. by 
assuming H is the unit matrix, so that the search direction is always -|g(i)>. A line search is carried out 
along the direction -|g(i)> to obtain λi. This method however, poses some problems. Subsequent search 
directions tend to be linearly dependent, so only a small subspace of the total space is explored.  

Directions with large components of |g(i)> are always favoured whereas progress can sometimes 
be made by searching in orthogonal directions to reach a part of the surface that would allow better 
progress. Also, the method converges very slowly near the minimum as g(x) is getting smaller in that 
vicinity. 

Summary 

The connection between the Hartree-Fock-SCF computations of molecular orbitals and the 
gradient optimization of the geometry. 
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 Figure 1.2.8—10 Flowchart for Non-empirical (ab-initio) ) and semi-empirical (AM1 or PM3 
Molecular orbital (MO)computations with geometry potimization 
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