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1.2.4. One- and Many-Electronic wave functions (multiplicity)

The wave functions of a given state for an N-particle (i.e. n-electron) system describes the
distribution or configuration of these N-particles in the given state, i.e.

®(1,2,...,N)
1.2.4—1. eq.

A special case of an N-particle wave function involves the case N = 1

O(1) =u(l)
1.2.4—2. eq.

where the one electron function « has a special importance as defined by equation {1.2.4—2.
eq.}. It should be recalled that elementary particles have spin characteristic. Depending on the type of
particle we have restrictions on the wave functions as given in Table 1.2.4-1.

Table 1.2.4-1 Spin symmetry restrictions

Particles Spin Description

Examples Type Eigenvalue Statistics Wave function
o, hv Bosons nh Bose-Einstein Symmetric
e,p,n Fermions (n/2) h Fermi-Dirac Anti-symmetric

For electrons (e), protons (p) and neutrons (n) the one electron wave function u of equation
1.2.4—2. eq. should include both a space function ¢ and spin function (o or ).

ol — {¢1 (Da()
¢ (HAM)
1.2.4—3. eq.

The one-electron function u is called spin-orbital while the ¢ is a spatial orbital. The product of
¢ and a or 3 implies the simultaneous probability of space orbital ¢ and spin a or f3.
Many-electron wave functions may be constructed as products of one-electron functions or

spin-orbitals.

d(L2,....,N) =u,(1),u,(2),...,u, (N)
1.2.4—4. eq.

Since electrons are indistinguishable any permutation of the labels 1.2.4—4. eq. should also be
a satisfactory wave functions thus yielding N! terms. For this reason, all fully permuted many-electron

wave functions must be renormalized through dividing by JN!
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n 1 & .
@(1,2,...,N) = A{u,(1 2),... Nt=—> (-D"Pu,(Du,(2)..uy (N
(, EARAEY ) {ul()auz( ): :uN( )} \/ﬁ;( ) vul()uz() uN( )
1.2.4—5. eq.
which equivalent to the formula for a determinant.
RETAORESEN0
®(1,2,.,N)=——| : :
V!
uy(N) - uy(N)
1.2.4—6. eq.

The spin-orbitals may be replaced by the product of a space and spin function from which it
follows that an orbital may appear only twice in a determinantal wave function once with a—spin and
once with B-spin. Otherwise the determinant would vanish as it will be identically zero.

¢ (Da(l) g (HBA) e ¢ Da) ¢ (DBD)
d(1,2,....2M) = : : : :

VEMR G canaemy gnpaM) - 4,@Ma@M) 4, QM)FEM)
1.2.4—7. eq.

This determinantal form of wave function is referred to as a ““Slater determinant”.

The concepts of multiplicity of the electronic system need to be introduced in connection with
the construction of many electron wave functions. Multiplicition (m) is related to the total spin: |S| of
the electronic system.

m=2|S|+1
1.2.4—38. eq.

In this fashion the multiplicity is increasing with the number of unpwired electrons the
electronic system contains as shown in Table 1.2.4-2
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Table 1.2.4-2 Relationship between spin, multiplicity and quantum description

Number ‘
of odd S| m Name Occupancy If\llllrllrzltli);rlsof possible wave
electrons
1|
0 0 1 Singlet T 4| ly 1
] ]
1
1 12 2 Doublet ;o 4| | ’
[}
i
2 1 3 Triplet ‘ 3
4_
3 112 |4 Quadruplet 4 4
_1_

The multiplicity shows the numbers of possible wave functions the electronic system may have.
These wave functions give identical energy values in the absence of the magnetic field but the
degenerate energy values do split up in the presence of an external magnetic field (B) as shown in
Figure 1.2.4—1

E ) E ) E )
Singlet Doublet! LI;J Triplet

B B B

Figure 1.2.4—1 Variation of energy levels with increasing magnetic field strength (B) for system
of different multiplicities

We perhaps should note, at this stage that electron spin resonance (ESR) or paramagnetic of
resonance (EPR) spectroscopy is related to the splitting up these energy levels. The singlet and triplet
wave functions may be illustrated for a two electron system such as He or H,.

The ground electronic configuration is represented by the single Slater determinant @ (1,2)
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1 |gMa@®  40)AQ0)
®,(1,2)=—
o(12) V2142 (2) 4,(2)B(2)
(033
b

o
P 1.2.4—9. eq.

which incorporates only the lowest MO (¢,).

Single substitution involves the replacement of ¢; in one of the 2 columns by ¢, but, for a
closed electronic shell each MO occurs twice so that there are two possibilities for replacement. These
involve substitution in the column containing a spin and in the column having the 3 spin associated
with the same spatial function

¢ Ma) o,1)AN) .
$(2a2) ¢,(2)B2)
[3 o
¢2+ + (033
¢1+ T o,
o

Neither of these determinants has physical significance but with a linear combination of the
two, for the description of both types of spin arrangement may be equally important. The linear
combinations, having negative and positive signs, yield wave functions of singlet and triplet
multiplicity respectively.

$,(Da)  A4MOAD)
$,(2a(2) #(2)BQ2)

nd

1.2.4—10. eq.

sa() HMAM| 1

1)1
"D (1,2) = ——={—
- { 46(a2) 4B 2

NN

$,(Da) 41D
$,(2)a(2) $(2)BQ2)

1.2.4—11. eq.
This is a wave function of a singlet excited electron configuration. For the triplet excited states

we have these for 3 distinctly different wave functions, which nevertheless are energetically degenerate
in the absence of an external magnetic field.
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#Ma)  HMOAD).
214(a2) $2B2)

Intro. Theo.Org.Chem.

‘O, (1,2) = \/_

¢ 1.2.4—12. eq.

‘012 L { #0a)  HOAO|, 1|4 Da0) mwm} Ny
V2 (V2[4(Da2) ¢4,(2)8(2) \/_ 210,2)a2) ¢(2)B(2)
o
- -
s
“ P 1.2.4—13. eq.
‘P (12) = ¢, (Da(l) ¢1(1)ﬁ'(1)
\/_ 2|9, (2)a(2) ¢1(2)ﬁ'(2)
p
¢2+
¢1+
P 1.2.4—14. eq.

The doublet state can be demonstrated on a 3 electron system such as Li.

| g Da)  4MAA)  F,Da(l)
2<I>1(1,2,3)=£¢1(2)05(2) $2B(2) ¢,(2a2) ie
$,3aB) 43)BB) ¢,(3)a3)
o
¢2+
%H
P 1.2.4—15. eq.
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. p(a@)  4MLD) 4, 1DHAO)
2®‘(1’2’3)=ﬁ¢1(2)a(2) $(2)5Q2) $,(2p(2) ie.
$(3aB) 4GB $,(3)LA)

B

o
ot

o
b 1.2.4—16. eq.

1.2.5. The Hartree-Fock method and its limitations (Correlation Energy)

The Schrodinger equation for a many electron system includes the many-electron Hamiltonian
operator which describes all the electronic interactions in the field of all the positively charged atomic
nuclei. Thus, the Hamiltonian operator is the mathematical equivalent of the chemical molecular
structure. The electronic Schrodinger equation also includes the many-electron wave function from
which the total electron distribution may be calculated. The Hartree Fock method converts this single
many-electron wave equation to many one-electron wave equations called the Hartree-Fock wave
equations.

One many - electron wave - equation : 131(1,2,...)‘1’(1,2,...) =FE(1,2,...)¥Y(,2,..) 12.5—1. eq.

Variational Theorem
(using a Slater determinant w.f)

F®, (1) = &, (D, (1)

FO)®D,(1) =&, (DD, (1)

Many one - electron wave - equations 1.2.5—2. eq.

FO®, (1)=&, (DD (1)

In this conversion the many electron wave function is constructed as a single Slater-determinant

and the variational theorem is applied. The Fock operator, F describes all the interactions of a single
electron in the field of all the other electrons as well as the atomic nuclei.
Converting a Hartree-Fock equation to its integrated form
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F = j¢‘jﬁ¢id7 = giij¢i¢idr = 2,5y
1.2.5—3. eq.

we can deal with actual numbers since now we have definite integrals. This expression can be
generalized in the form of a matrix equation

F* =g

1K)

1.2.5—4. eq.

Where the i"j elements of S ? defined as <¢i|¢;7>. For an orthonormal set of functions {¢;}

S ?=1 (i.e the unit matrix). Consequently F = ¢ will be a diagonal matrix. Transformation of AO(n)

to MO(¢) for a system with 2M electrons and N different AO we obtain:

Cii Gt Gy Ciy 0 Cry
HOMO LUMO
_ - _ Cyi Cpnp 0 Gy Coyn 7 Cop
<¢|=(¢1¢2 Por P On) =M1 1y5 1) . . .
occupied virtual
Cni Cy2 " Cam Cyya 0 Oy
Coeficients for the M

doubly occupied MO

1.2.5—5. eq.

Necessary to generate M doubly occupied MO or in vector notation:

(¢]=nlc
1.2.5—6. eq.

where C is transforming matrix converting AOs to MOs. After substituting this expansion of

the MOs in terms of AOs our integrated Hartree-Fock equation assumes the following form:

"
e=C'F'C
7 n n
& 00 0 Ci €y cw | FOF, o By [ en o Ciy
U U U
0 &, 0 0| |¢ ¢y Cva | i Fpo o By | ey Cx Con
0 0 0 : : : : : : :
U U U
0 0 0 Enn Cin  Con Cav FN1 FNz FNN Cni Cw2 Caw
Diagonal Real symmetric

1.2.5—7. eq.

From the coefficients of the M doubly occupied MO we may generate the density matrix(p)
which is a symmetric matrix
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Cc C' =
=M=M /=)
Cii Cno 0 Ciyy | Gy Cy 0 Cyy Pu P 7 P
Coyp Cpn 7 Gy | € €yt Cynp | | P Pn 7t Poy
Cnvi Cy2 " Cuy | Civ Com " Cay Pnt Pn2 7 Pww
NaM MN NN

Real _symmetric

1.2.5—8. eq.

The elements of the Fock matrix F;" are evaluated from the one-electron integrals (h;") and the
two-electron integrals, the Coulombs (J;;") and the exchange (Kj;") integrals, as well as the elements of
the density matrix (p)

N N
F_i;] = hf +2J;7 _Kg7 = h: + 2 Z[Z{Utﬂj‘nkﬂz}_ {771‘771{|77j771} 0 (2)

=

—

1.2.5—9. eq.

The total electronic energy (E) can also be calculated from the same components

NN L, W 1 NN Of r e
E_zzzpij by +2.2 Py [2‘]1.7_[(:1]

i=l j=1 i=l j=1

1.2.5—10. eq.

Let us illustrate the overall process for the case of the H, molecule. We begin with a non-
orthogonal (but normalized ) set of AO{n} which are transformed directly to an orthonormal set of
MO({¢}. This performed I two steps. He first involves orthogonalization; this trnsformation introduces
“kinks ” in the orbitals at the positionof the other nuclei so thaat the productof any two function(e.g.
11%2) of the orthogonalized orbitals (00) contains equal; “negative and positive contributions” which
cancel upon integration.
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Figure 1.2.5—1 A schematic illustration for the sequence transformation of AO to MO.

Transformation from the 00 basis set () to the MO basis set (¢) involves an orthogonal
transformation which is mathematically equivalent to the rotation of one N-dimensional vector
spaceinto another without changing the orthonormality:

15

| ¥

=

AO 00 MO
eq. 1.2.5—11

This two process requires a separation of the C matrix into two separate matrices: V and U .
Matrix V' performs the orthogonalization of n and U rotates y into ¢. (For real orbitals U is an

orthogonal matrix, otherwise it is unitary. )
In matrix notation the process is writtenas
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¢p=nC=nVU= U

eq. 1.2.5—12
and in details
¢ Cp Ciy
C c e C
21 22 2n
(¢1 ¢2 e ¢n ) - (771 772 tt 77;1 : : : -
cnl cn2 cnn
NxM
Vit Vi Vip | U Ui u,
( Voo Voo ottt Vo || Uy Uy vt Uy, |
771 772 7711 : : : : : : -
an Vn2 Vnn unl unZ e u/m
NxM NxM
Uy Up Uy,
( Uy Uy Uy,
Xi X2 o Xa .
unl unZ unn
NxM
eq. 1.2.5—13

It is easy to illustratethe vector analogy of orbital transformations for the case of H, because of
the two dimensional nature of the problem. The vector analogy is valid for larger molecules even thogh
a pictorial description of the process is impossible.
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Figure 1.2.5—2 A vector model of AO and MO orbitals assoiciated with H,

The atomic orbitals {n}of the expansion are called the basis set and its size is noted by the letter
N. Of course, N can be large and, in general, with increasing N, i.e. with increasing basis set size, we
improve the result of the calculations. In the limiting sense we generate MOs at the Hartree-Fock limit
(HFL) which produces the energy of the Hartree-Fock limit (Egpr)

N
HFL _ 1:
g7 = lim 2.Cym,

1.2.5—14. eq.

Y

Figure 1.2.5—3Convergence to the Hartree-fock limit (HFL) with increasing basis set size(N).

The energy obtained in this way does not correspond to the experimental energy because we did
use only a single Slater determinant for our many-electron wave function and because our Hamilton
Operator was non-relativistic. The gap between the HFL and the non-relativistic limit (NRL) is called
the electron correlation or correlation energy (Ecorr)
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E ) 1 0
Y v
/
1 \ EHFL~99’5% of ENRL
ECOI'I'
. . A Y EnrL
Relativistic E
correlation y B

experimental

Figure 1.2.5—4 The concept of correlation energy and other components.

The correlation energy is a systematic error due to double occupancy. As a result of occupancy
we allow two electrons (both negatively charged) to occupied the same region of space (the same MO)
thus, their motion is not correlated.

For example for NH3:

Exrpr=-56.225 hartree
Exri= -56.554 hartree
Ecor= 0.229 hartree

the Ecorr 15 0.4% of Engrr thus Eppr recovers 99.6% of the Exrr. Yet this 0.4% corresponds to

E corr = 0.229x627.51 = 143.7 kcal/mol = 601.2 kJ/mol
eq. 1.2.5—15

which is larger than the bond dissociation energy (BDE) of an N-H bond not mentioning the
pyramidal inversion of NH3 which is about

BDE(N-H) = 5 kcal/mol = 20.9 kJ/mol
eq. 1.2.5—16

As it was clear from the equations presented at the early part of the chapter the Fock matrix (F)
was a function of electron density

F=f(p)
1.2.5—17. eq.

Yet the electron density, p, was to be computed from the coefficient matrix C. Since C is

expected as one of the solutions of the Hartree-Fock problem we need to know the solution in order to
set up the problem to be solved. Thus the solution is to be obtained iteratively. In the traditional
approach (c.f. Figure 1.2.5—5 ) molecular integrals were to be computed initially and they were to be
stored and used over and over in each cycle of the iterative process
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Nowadays the integral evaluation in terms of Gaussian (GTF) is faster than reading from a disk
therefore they are evaluated directly at each cycle of the iteration. In this way the calculation is more
accurate since for storage the last several digits after the decimal point had to be eliminated.
Calculating the Fock matrix elements from several millions of integrals lead to some accumulated
numerical errors. Consequently, this “direct SCF” computation, illustrated in the next flowchart below.
(Figure 1.2.5—06)
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Lecture 4

Start
h A

Evaluate all molecular integrals

v

Construct V-matrix from overlap Matrix S to orthogonalise {n}to{y}

V= S—1/2

Initial coefficient matrix
The simplest guess is
=0

v
SetE >0

v

Figure 1.2.5—S5 Flowchart for the iterative traditional Self-Consistent-Field (SCF) method.

»

From Density Matrix
c c'=p

—

From the three matrices
H J(P) KP

v

Calculate Energy: E,

v

Calculate the difference
AEn:En—l 'En
A:AEn'AEdc:sired

v
~Slake Decision=

A 4

Print out E,

Print out €p and C;;

Form F-matrix
£77=£’1+2i’7_£77

v

Transform F" to F*
Fr=V'E'Y

v
Diagonalize F*
U'FU=¢

v

Form coefficient matrix

| c=ru
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Initial coefficient matrix
The simplest guess is
€=0

Lecture 4

Start
h A

SetE>0

hY
>

From Density Matrix

C C' =p

=M=M
v

Evaluate all molecular integrals

v

Construct V-matrix from overlap Matrix S to orthogonalise {n}to{y}

VES—I/Z

!

From the three matrices
H J(P) KP

v

Calculate Energy: E,

|

v

Calculate the difference
AEn:En—l 'En
A:AEn'AEdc:sired

v
~Slake Decision=

A\ 4

Print out E,

Print out €p and Cj;

Form F-matrix

£U=£U+Zi’1_£ﬂ

v

Transform F" to F*
F'=V'F"V

v
Diagonalize F*
U'FU=¢
v

Form coefficient matrix

End of SCF

Figure 1.2.5—6 Flowchart for the iterative Direct Self-Consistent-Field (SCF) method.
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1.2.6. Post-Hartree-Fock methods

Post Hartree-Fock methods

Although the correlation energy (Ecor) usually amounts to less than 1% of the total experimental
energy of a molecule, for many systems this amount nevertheless is larger than or comparable to the
energies associated with physical or chemical phenomena. Thus for ammonia the correlation energy is
estimated to be 206.5 kcal/mole (0.329 hartree) but the barrier to pyramidal inversion is only 5.8
kcal/mole and the proton affinity is 206.4 kcal/mole. It is generally believed that these quantities are
reproduced farly accurately at the HFL, i.e. that there exists a cancellation of errors. [For the two
quantities mentioned this means that the Ecor (planar) = Ecor (pyramidal) and ECOH(NHH) ]
Ecor(NH3).]For phenomena in which electrons are unpaired (e.g. excitation, dissociation) the
correlation energy cannot be ignored and it is necessary to go beyond the HFL. A wave function that do
that is referred to as a correlated wave function and such a process referred has a Post Hartree-Fock
methods. Its aim is to recover at least a portion of this systematic error.

0.0 ‘— —— JV— ]
J/ - — L a4 - 1
4s50— T T ’ﬂ’ T ’|’ ”Iv T
ab ¢ present work
4570 | B l B
T —_ T —
4720 = 32 42 48

sp spd sp sp spd
Contracted BasisFunctions

m
o
3= .
E 4740 — gtoml_c Hartree-Fock
S -4/4 nergies
g Energy
)
z \
it _ Y
e vy
2 Hartree-Fock limit ——
-476.0 = Correlation
Energy

Non-relativistic limit

L A
Dissociation Relativistic

Energz Enelgy

Experimental Energy

-478.0 |—

Figure 1.2.6—1 A breakdown of total energy for episulfide (C;H4S) to experimentally observable
and quantum chemically calculable fraction. The results obtained by the different atomic basis
sets are shown on the upper right-hand side of the figure.
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Escr

Total Energy (a.u)

-8.0 — Y

=

o3l
T
=}

8.1~

Number of basis functions (N)
Figure 1.2.6—2The convergence of Escr to Eyr with increasing basis set size for the ground state
of LiH. [cf. J. Chem. Phys. 44, 1849 (1966)]

From a mathematical standpoint the correlation energy is the result of a systematic error of in
the wave function computed by the HF method.
This error is the result of our construction of a 2M x 2M determinantal wave function.

®,(1,2,..2M) = det | ¢, (D () (D BQ)...¢, @M ~1)a(2M ~ )¢, 2M)B2M)|
1.2.6—1. eq.

Using only M m.o. from the very extensive set of N m.o. (N >M) obtained from the HF-SCF.

This is illustrated in 1.2.6—2. eq. where {n} is the set of AO and {¢} represents the set of MO in
column vector notation
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a,; dp a,y
a, Ay ayn
¢1a¢2a"'¢M="'¢N :(ﬂ1aﬂz,"'ﬂN)= 4 4 p
—
M doubly occupied M1 M2 MN
Ayy Ay "0 Ay

1.2.6—2. eq.

Even if {n} had represented a complete set [i.e {¢p} would also represent a complete set] the
Slater determinant is computed from much less than the complete set of {¢}. For example we might
have employed 50 basis functions (N=50) for a calculation on NH3 even though there are only 5
occupied MO (N=5). The remaining 45 empty MO would be discarded (cf. the partitioning in equation
1.2.6—2. eq. in constructing the Slater determinant ).
From a physical standpoint the correlation problem is related to the position of one electron
with respect to any other.
The non-relativistic Hamiltonian includes the recprocal values of all rj;

H(1,2,..) = _h(i) +Zl

1.2.6—3. eq.

The terms in rij-l constituting the mutual repulsion between electrons i and j.

V.. :l".—l"j

1 1

Figure 1.2.6—3 Vector model of electron-electron repulsion

Since rij'1—>oo as r;;—0 the approach of two electrons, to each other, is not favourable and each
is surrounded by a ,,Coulomb hole”. As r; approaches r; (i.e. r;j —0)as shown in Figure 1.2.5—S5) the
motion of the two electron becomes ,,correlated”.

Since the Pauli principle has been incorporated in the wave function in the form of an
antisymmetrised orbital product (Slater determinant):

u (1) uy (2)

— N
@, (1.2...) = det| ¢, (D (D¢, (D BQ)...|= Alu, (D, (2)...]
1.2.6—4. eq.

In this expression (where u; (i) is represents for the i" spin-orbital), the probability of finding
two electrons at the same position is zero or in other words the 2-electrons probability density vanishes
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for r; = rj in the case of two electrons having the same spin (“Fermi hole”). For this reason the
correlation problem can be thought of as the search for proper treatment of the “Coulomb” correlation
between electrons having antiparallel spin. The correlation between electrons of antiparallel spin may
involve numerous interactions.
One way to deal with the correlation problem is to include a function of |, explicitly in the total
wave function which will not permit r;, to become zero. Thus instead of equation 1.2.6—4. eq. we may
write, for a two electron system, the following expression

W(1,2) = Afu, (D, (1 (1,2)
1.2.6—5. eq.

For systems that contain more than 2 electrons this explicit correlated wave function is not
practical and the correlation problem is usually tackled by some implicit method.
The most general “implicit” method (where rj; is not included explicitly in the wave function) is
known as the method of configuration interaction (CI).
The previously unused (virtual) molecular orbital are substituted into the expression for @ (this
is possible because of the nodal properties of these virtual MO are aprepriate which is a consequence of
their orthogonality to the occupied MO)

Oy =[uy()...u; (@)...u;(j)...uy (N)]
1.2.6—6. eq.

Substitution may take place at 1, 2 or more sites. Thus, for a triple substitution, the wave
function associated with the new configuration would be

©, (12,000, N) = O = A, ().t (D). tty ()t () 10, (W]
1.2.6—7. eq.

Where spin orbital a, b, ¢ have replaced spin-orbitals 1, j, k.
The exact wave function is then written as the linear combination of these different substituted

configurations.
Ccl _ SCF ama ab & ab abe g abe
YL =Co0p T+ CID! + Y ClPD + D Crr D+
i,a ij ,ab ijk ,abc

1.2.6—38. eq.

where the set of many electron functions {®} represents configurations. The general approach
will be illustrated for the case of H, (a 2 orbital -2 electron problem).
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The ground electronic configuration is represented by the single Slater determinant ®@(1, 2).
#Mad)  4MAD)|

214,2a2) ¢,(2)p (2)
0}

o

ofp

0( ) \/—

1.2.6—9. eq.

Which incorporates only the lowest MO(¢,).
Single substitution involves the replacement of ¢; in one of the 2 columns by ¢, but, for a
closed electronic shell each MO occurs twice so that there are two possibilities for replacement. These
involve substitution in the column containing o spin and in the column the 3 spin associated with the
same spatial function

#ad) O]
$(Da2) 4B

RIZCLORACZONS
¢2 e #2BQ)

o

f1¢2
1

| ¢

;

Neither of these determinants has physical significance but with linear combination of the two
both types of spin arrangement may be equally important. The linear combinations having positive and
negative signs yield wave function of triplet and singlet multiplicity respectively.

b

1.2.6—10. eq.

"0 (12) { A a)  FOAD|, 1 [ADa) ¢1(l)ﬁ(l)}

V2 [V2]4(2)a2) 4,)BQ2) V2i4,()a2) ¢(2)pQ2)
1.2.6—11. eq.

The double substituted wavefunction has the following form:

0.(12) - { Al gMAD| 1 [A0a() ¢1(l)ﬂ(l)}

V2 V2 142a) ¢,2802) \/5 $,(2)a(2) ¢,(2)B(2)
1.2.6—12. eq.
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$,(Da)  #MHAM)
$,(2a(2) ¢,(2)B(2)

o fB

.

o eq. 1.2.6—13

Intro.Theo.Org.Chem.

®,(1,2) = %

The three configurations @, @, @, are now treated as the many electron basis for the
calculation of a state wave function (just as atomic orbital constituted the one electron basis functions
for the calculation of MO). For example, for the ground electronic state ‘¥ we may write

Wy (1.2) = Cpy®, (12) + Gy ®, (12) + Cpy®, (12)
1.2.6—14. eq.

However, since one may obtain as many as 3 state functions from three basis functions, we

write
Co Co Con
[lPO (1,2)¥,(1,2)Y, (laz)] = [(D 0(1,l2)0,(L2)D,(1,2)] ¢, ¢, ¢y
Cy €y Cp

1.2.6—15. eq.

This linear transformation can be viewed as the rotation of a 3 dimensional vector space into
another 3-dimensional vector space, as illustrated graphically in the next figure.
Computation of the coefficient matrix, C, constitutes an eigen-value problem.

c'HC=C'

(k%]

CE
1.2.6—16. eq.

In which H is the matrix representative of the many-electron Hamiltonian H(1,2 ... ) over the

configurational basis chosen (including single , double , ... etc. substitution). The matrix is shown in
1.2.6—17. eq.

22/29



Intro.Theo.Org.Chem. Lecture 4

@, (1,2)

A

¥,(1,2) 4‘1’0 1,2)
*

‘\\\ I/ @1 (1’2)

R () ok > D, (1,2)

T

¥, (1,2) ¥ (1,2) ¥, (1,2)
Ground Single substituted Double substituted
configuration configuration configuration

Figure 1.2.6—4A vector model depicting the linear transformation of a 3D configurational vector
space (configurations — states) for the case of H,

H.F. Singlesubstitution Doublesubstitution
<®O‘ﬁ‘®o> <q)0151‘<1>0>... <q>0‘1f1q>;;b>...
(w; Alog)...

Iz
I

Aoy)... (o

ab
<(I) ij

y

H‘®7b>...

1.2.6—17. eq.

It is readily appreciated that the size of the many electron basis, i.e. the number of
configurations that can be constructed , increases greatly as the number of available orbitals increases.
For examples a full CI (including all possible substitutions for 10 electrons and 10 MO involves the
order of 10° configurations.) This means that the A matrix has a dimension 100,000 x 100,000 and it

is not possible to diagonalise such a matrix. It is evident that CI calculations cannot be performed in
general, but only in some limited way.

An example of the use of CI in a conformational problem is the calculation of barrier heights
discussed below. The orbitals used for CH;™ and NH3 are shown schematically in Figure 1.2.6—S5.
These MO yielded a total of 5260 configurations. From this set 911 were selected by perturbation
theory. A CI calculation performed over these 911 configurations, lowered the total (i.e. those that

contribute most) at every geometry (solid curve) because if the same 911 configuration were used at
each geometry the barrier became anomalously high (broken curve) as indicated in Figure 1.2.6—6.
The overall energy change is shown in Figure 1.2.6—7 together with some computed results which are
also summarized in Table 1.2.6-1
In closing it might be appropriate to take this opportunity to emphasize that most of the
chemist’s language is based on a HF scheme (i.e. double occupancy, distribution of electrons in
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molecular orbitals, excitation of electrons by jumping from one orbital to different one, atomic
configurations like 1s2, 252, 2s6, 332, 3p5 for chlorine, etc.).

The language “works” because the HF wave function is a very good approximation (99.5%) but
it is not everything. All that chemical language vanishes and means nothing when a more sophisticated
wave function is used. It is like a “Law of Complementarities”: The simpler the wave function, the
easier to interpret and explain qualitatively the conclusions; on the other hand the better the wave
function, the more it becomes pure mathematical entity and it is more difficult to talk about in a lecture
room.

2¢, — — 2

5260  TmTTTTTTTmmmmmmmmoTmmmmmmmmmoommmmmmommommmmes

Configuration
el
3a 1_‘

Figure 1.2.6—5 Molecular orbitals involved in the CI calculations of CH;” and NH3
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Figure 1.2.6—6 The variation of CH3; and NH; total energies along the inversion coordinate as
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Table 1.2.6-1 A comparison of SCF and CI energies of NH3

Author Code for Eeference in Basis™ Method F{llartrea)
Figure 1 J. Chem. Phys.
Kaldor et al. a 45, BR8 {(196F) 13 sTQ 5CF ~56.0992
Clementi h 4G, 3IR31 [1967) 53 GTF SCF ~56.,0108
Ritehie et al. c 47, 564 {1967) &0 GIF SCF -56.2015
Clementi et al. d 48, 4914 [19A%) £7 GTF SCF -56.2109
Rauk at al =] 32, 4133 (1070} 41 OTF SCF -56,.2219
Stevens f 55, 1720 (1871} 137 £T0 SCF -56.2211
Kari et al g 56, 4337 (1972} 73 GTF SCF -56.2117
CI ~-56,3%47
sr0  Slater type orbitals; GTF Gaussian type functions
bSCF Self-Conslstent Pield: T Canfiguration interaction (911 configurations)
| [TTITTTT
Lo L L oL L L
i - T T e
T T TTITTTITT
e ol ATOMIC I abcde ! 9 n I
ENERGIE [ | . .
woes o | LRl e
¥ ! | P 4
~ 1 ro |
. | b 1
. gy D |
: -56,225 L LS S 2 25 O
| ..
' |
DISSOCIATION i R
ENERGY SCF-CI 1
B ! CORRELATION
| ENERGY
- 56-5— | 1
V NRI -
TPV, ~565%54— ~ —atY _ NRL _ Yy __ ___
- — {000
—56,578 EXPERIMENTAL

Figure 1.2.6—7A breakdown of the total energy for NH; to experimentally observable and
quantum chemically calculable fractions. The computed energy values (a-h) are summarized in

Table VIII-4
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As it vas outlined in the case of CI calculations carried out for: CHs™ and :NHj the selection of
configurations are crucial since the number of configurations that maybe generated are astronomical.
The 2™, 3™ or higher order Moler-Plesset (MP2, MP3,...) methods and the coupled cluster (CC)
methods achieve that goal rather successfully.

Density functional theory

Energy is a function of the electron density (p) which is in term a function of the geometry

E = F[ p(Geometry)]

1.2.6—18. eq.
In the Hartree-Fock formalism
E=T[p]+V.[pl+V.lpP]
Ilgl’;‘;;’; PotentialEnergy
1.2.6—19. eq.

h[p] 2J[pl-klp]
f_J;_\

———
E=T[p]+V, lpl+ V. .lP]
Figure 1.2.6—S8

The first two term is written as a one electron contribution h[p] while the third term is spilt into
Coulomb (J[p]) and Exchange (K[p]) contributions

E=h[p]+2J[p]-K[p]
1.2.6—20. eq.
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T 1P1= 8,06, [,28,0) = XX (4, O @) 1,6, )04 )
7 ’ eq. 1.2.6—21

i

=X 32 (O D ]|, 21, (D)o 2)
n . eq. 1.2.6—22

K, [p]= @awaﬂ\¢@mm > 38,00, )|, 2, )y )
Tt . eq. 1.2.6—23

=ZZZZ%®mmmm |7 @n, W)y @

1

eq. 1.2.6—24

The exchange terms are more problematic than the Columbic term because both electrons are in
both orbitals. In 1930 Dirac suggested on the basis of homogeneous electron gas model the following
relationship which is frequently referred to as the “local density approximation” (LDA)

1
-4
e P

2\ 4r
1.2.6—25. eq.
Becke modified this expression in 1988 to the following
4
588 _ pLDA _bJ‘ px’ dr
* ' (1+6bsinh™ x)
1.2.6—26. eq.

In which b is an empirically fitted parameter and x contains the gradient of the electron density
(V p). However, exchange, Ey_is only one of the problems; correlation energy (Eco) is another
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E=h[p]+2J[pl-Klpl+ E.[p]
%/—/

E.

1.2.6—27. eq.

The last two terms are usually combined as exchange (x) correlation(c) contribution denoted by
Exc.

Various methods as well as their mixed or “hybrid”versions are in used nowadays. All of these
include a variety of fitted parameters which were optimized to give the best fit of the calculated energy
to molecular atomization energies. In all these methods instead of the LDA approximation Local Spin
Density Approximation (LSDA) is used in which electrons of o and [ spins arre assigned to different

orbital thus correcting the uniform electron gas model.

E)i3PW — EfSDA +CO(E;IF —Ei,SDA)+CxEx888 +E£/WN +CCAECPW
1.2.6—28. eq.

or

EPY" =(1-a,—a )EP" +a ,EM" +a E?™ +(1-a ))E""" +a EM"
1.2.6—29. eq.

Where E,'" is the HF exchange energy functional, E”* is the Becke 88 exchange functional

mentioned above, E." "™ is the Vosko, Wilk, Nusair function (VWN, or Slater VWN, SVWN function),
which forms part of the accurate functional for the homogeneous electron gas of the LDA and the
LSDA and ECLYP is the LYP correlation functional. Note that E, and E. of the last three terms as
gradient corrected.
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