Válogatott fejezetek a peptid- és fehérjekémiából 26.04.2018

Zoltán Bánóczi

Department of Organic Chemistry, ELTE, Budapest

Cellular uptake of compounds

Transporter proteins/chanels

The first observations

Homeodomain of Drosophila Antennapedia protein

- goes through the membrane of nervous cells
- localisation in nucleus

Joliot A, et al. *Proc Natl Acad Sci USA* 1991, 88, 1864–1868. ⁴³RQIKIWFQNRRMKWKK⁵⁸

Cell-penetrating peptides

Short peptides - with cell-internalisation ability - can transport the covalently attached cargo (protein, ODN, PNA, drugs) into cells upto 30 kDa. The mechanism of penetration is not clear.

Peptide	Sequence (protein)	Origin	
Tat (48–60)	⁴⁸ GRKKRRQRRRPPQ ⁶⁰	HIV-1 Tat protein	
Penetratin	⁴³ RQIKIWFQNRRMKWKK ⁵⁸	Drosophila Antennapedia protein	
Signal sequence	AAVALLPAVLLALLAP	Kaposi fibroblast growth factor (K-FGF).	
peptide	EILLPNNYESYKYPGMFIALSK	Kaposi fibroblast growth factor (K-FGF).	
	VQRKRQKLMP	NF-kB p50 transkription factor	
Hydrophobic	MGLGLHLLVLAAALQGA	Caïman crocodylus Ig(v)	
peptides	MGLGLHLLVLAAALQGAKKKRKV.	chimera peptide (Ig(v)-SV40 T-antigen)	
Virial	VP22 protein	herpes simplex virus-1	
peptides/proteins	¹ AVGAIGALFLGFLGAAG ¹⁷	HIV gp41 glikoprotein, ⁸ Met→Leu	
	GLFEAIAGFIENGWEGMIDGGGYC	Influenza hemaglutinin,	
Substance P	RPKPQQFFGLM	neuropeptide	
Transportan	GWTLNSAGYLLGKINLKALAALAKKIL	chimera peptide, galanin-mastoparan	

F. Hudecz et al., Med Res Rev. 2005, 25, 679-736.

De novo designed peptides

Oligopeptides (Lys, Arg, Orn, His)

- Hexaarginine*
- peptoid transporters**
 - distance between the Arg residues
 - distance of guanidino group

* Mitchell DJ, et al. *J. Pept. Res.* 2000, 56, 318–325. **Wender PA, et al. *Proc. Natl. Acad. Sci. USA* 2000, 97, 13003–13008. Oligoarginines - hexa- and octaarginine* - arginine tree**

* Futaki S, et al. *J. Biol. Chem.* 2001, 276,5836-5840. **Futaki S, et al. *Biochemistry* 2002, 41, 7925-7930.

Model peptides - KLA model peptide[#] KLALKLALKALKAALKLA - Model peptide^{##} KETWWETWWTEWSQPKKKRKV

Scheller A, et al. J. Pept. Sci. 1999, 5, 185-194.
##Morris MC, et al. Nat. Biotechnol. 2001, 19, 1173-1176.

Cellular uptake studies using fluorescence labelling

Olympus CKX41 fluorescence microscope

sup_{int} $sup_$

BD LSR II flow cytometer

First experiments

- fluorescence microscopy
- fixation
- 4 °C
- r_n

Richard P.J. et al. J. Biol. Chem. 2003, 278, 585-590.

Fluorescence detection – microscopy, flow cytometry

- without fixation
- remove the membrane bound peptides
 - digestion by trypsin
 - washing with heparin
- using inhibitors

ATP depletion: NaN₃ and deoxyglucose endocytosis inhibitors: methyl-β-cyclodextrin chloropromazine, Cellular uptake studies II.

Functional studies

- luciferase splice correction test

Lundin P. et al. *Bioconj. Chem*, 2008, 19, 2535-2542 - inhibition of the expression of luciferase

RP-HPLC with fluorescence detector Palm C, et al. *Peptides* 2006, 27 1710-1716.

Mass spectrometry Burlina F, et al. *Angewandte Chemie* 2005, 44, 4244-4247.

Cellular uptake studies III.

Using fluorimeter Illien F, et al. *Sci Rep.* 2016; 6, 36938.

Mechanism of internalisation

Is there receptor?

- r_n is more effective than R_n
- More than one mechanism
 - endocytosis
 - direct penetration above a threshold concentration

Depending on the conditions

Kosuge M. et al. Bioconj. Chem. 2008, 19, 656-664

Direct internalisation – how?

Di Pisa M. Biochemistry, 2015, 54, pp 194-207.

Internalisation of oligoarginines

Murayama T, et al., Angew. Chem. Int. Ed. 2017, 56, 7644 - 7647

Calpain activator conjugates

6-

Calpains

Superfamily of Ca²⁺ dependent cysteine proteases.

Ca²⁺ signal induced cleavage of specific proteins involved in signaling cascades.

In mammals m-calpain and µ-calpain are constitutively expressed in all tissues.

Perrin J.B., et al., *Int. J. Biochem. Cell Biol.* 2002, 34, 722-725.

TRENDS in Molecular Medicine

Heterodimer of non-activated m-calpain Strobl S., et al., *Proc. Natl. Acad. Sci. U. S. A.* 2000, 97, 588-592.

(SKPIGPDDAIDALSSDFTS-NH₂)

X: H or Hca

Conjugates labelled by two fluorophores

Activation of isolated m-calpain

Bánóczi Z. et al. Bioconjugate Chem. 2007, 18, 130-137.

Uptake of Hca-penetratin-calpastatin peptide conjugates by COS-7 cells with (A,B) or without (C) fixation.

A) HcaPenKalpA amide

B) HcaPenKalpC thioether

C) HcaPenKalpC thioether

HcaPenCalp(Flu)C conjugate with disulfide bond

Calpain activity in COS-7 cell lysate

Detection of intracellular calpain activity

-

Calpain substrate

A novel and optimized FRET (fluorescence resonance energy transfer) substrate was designed and prepared from the preference matrix of calpain cleavage sites.

DABCYL

EDANS

Suitable for in vitro measurements: the fluorescence intensity depends

only on the calpain activity.

Tompa P., et al. J. Biol. Chem. 2004, 279, 20775-20785.

Calpain cleavage of FRET substrate – heptaarginine conjugate

$$c_{substrate} = 200 \ \mu M, c_{CalpainB} = 0.5 \ \mu M$$

 $\lambda_{ex} = 320 \ nm, \ \lambda_{em} = 480 \ nm$

Substrate	K _M (μM)	k_{cat} (s ⁻¹)	$k_{cat}/K_{M}(M^{-1}s^{-1})$
DABCYL- TPLKSPPPSPR-EDANS	250	0.2	680
DABCYL-TPLKPPPSPRE(EDANS)RRRRRRR-NH2	40	0.17	5000

Bánóczi Z. et al. Bioconjugate Chem. 2008, 19, 1375-1381.

Penetration of FRET substrate-heptaargine conjugate and substrate peptide into COS-7 cells

COS7 cells were incubated for 3 h and were treated by trypsin

COS7 cells were incubated at 330 µM for 4 h

Calpain activity in cell-lysate

A) Substrate is in lysate of S2 cellB) Substrate is in lysate of S2 cell overexpressing calpainC) LY-AMC is in lysate of S2 cell overexpressing calpain

 $c_{LY-AMC} = 1 \text{ mM or } c_{substrate} = 100 \text{ } \mu\text{M}$

LY-AMC: $\lambda_{ex.}$ =380 nm, $\lambda_{em.}$ = 460 nm Substrate: λ_{ex} =320 nm, λ_{em} = 480 nm

S2 cells were incubated with 150 μM substrate at 25-28°C for 20 h and were Lysed.

Hippocampal slices slices were treated only with the 50 μ M cell–penetrating substrate for 5 min.

Slices treated with the 50 μ M cell–penetrating substrate for 5 min and then 5 μ M A+C conjugates was mixed into the solution and incubation was followed for further 15 min. Pyramidal cell layer (empty arrows) and also in other regions (filled arrows)

Drug-Cell penetrating peptide conjugates

-

1

Daunomycin

- antitumor drug used in cancer treatment
- side-effects; cardiotoxicity, immunsupression
- development of resistance

Conjugation sites

Alkyl-hydrazine Langer, M. et al., J. Med. Chem., 2001, 44, 1341. OH 0 Ο O-alkyl hydroxylamine Ingallinella, P. et al., *Bioorg. Med. Chem. Lett.*, 2001, 11, 1343. CH₃ OH OCH₃ O OH H₃C Carboxylic acids OH Yamamoto, K. et al., J. Med. Chem., 1972, 15, 872.

Structure of conjugates

Cytostatic effect of conjugates

- Cells were treated by the conjugates solution at concentration 2.6 x 10^{-4} - 10^2 μ M. - The IC₅₀ values were determined by MTT assay.

The effect of trypsin treatment

HL-60 cells were treated with the solution of conjugates (c= 30μ M, $90 \min$), then with/without trypsin treatment the fluorescence intensity of cells was studied by flow cytometry.

Cellular uptake by HL-60 cells

Concentration dependence

Vinblastin

- vinca alkaloids (vincristin, vinblastin)- bisindol alkaloids
- vinblastin is used in chemotherapy
- destroy the microtubular system
- side effects, e.g. leucopenia

Structure of conjugate

two isomers: L- or D-Trp

Cytostatic activity of conjugates

Depolymerisation of microtubular system

vinblastin

17-dezacetylvinblTrp

17-dezacetylvinblTrpArg₈-2

17-dezacetylvinblTrpArg₈-1

	aberant mitozis (%)	interfase microtubuless	Aberant mitozis (%)	interfase microtubules	Aberant mitozis (%)	interfase microtubules	Aberant mitozis (%)	interfase microtubules
control	2	normal	2	Normal	2	normal	2	normal
0,25µМ	100	Depolymerised	47	normal	22	normal	n. d.	n. d.
1μM	100	Depolymerised	100	fragmented	75	normal	45	normal
2,5µM	100	Depolymerised	100	fragmented	98	fragmented	75	normal
5μΜ	100	Depolymerised	100	depolymerise	100	fragmented	100	normal

Methotrexate

Well-known antitumor agent.

Antifolate. Inhibit dihydrofolate reductase and thymidylate synthase.

Important step is the polyglutamilation.

Immunosuppressive and anti-inflammatory effect.

B. J. Perrin et al., Int. J. Biochem. Cell Biol. 2002, 34, 722-725.

Structure of conjugates

Our aim was to use conjugates containing free and pentaglutamilated methotrexate and cell-penetrating peptide against resistant tumor cells.

Cellular uptake of conjugates

HL-60 cells

Compound	F _{mean} (sd)			Fluorescent cells % (sd)		
_	1μΜ	10 μ Μ	50 µ M	1μΜ	10 µ M	50 μ Μ
Cf-Arg ₈	2569(35)	185413(25267)	259163(545)	100 (0)	100 (0)	100 (0)
Cf-Glu ₅ -Arg ₈	55(2)	493(31)	3333(689)	3 (0)	92 (2)	100 (0)
Cf-Glu ₅ -Gly ₃ -Arg ₉	335 (21)	2881 (105)	-	62.8 (5.2)	100 (0)	-
Cf-PenC(desMet ¹²)	4129(744)	22421(863)	48957(10221)	100 (0)	100 (0)	100 (0)
Cf-Glu ₅ -Pen(desMet ¹²)	172(27)	3450(336)	9646(268)	13 (2)	100 (0)	100 (0)
Cf-Glu ₅ -Gly ₃ -Pen(desMet ¹²)	343 (12)	3540 (372)	-	73.9 (2)	100 (0)	-

HL-60 cells were treated for 90 min. After washing and trypsin treatment the fluorescence intensity of cells was measured by flow cytometry on a BD LSR II cytometer.

Cytostatic effect of MTX-conjugates

MCF-7 and MDA-MB-231 cells

Compounds	IC ₅₀ (sd) (μM)			
	MCF-7	MDA-MB-231		
Penetratin	> 100	> 100		
MTX	0.56 (0.57)	> 100		
MTX-Pen(desMet ¹²) (1)	>100	82.5 (13.9)		
MTX-Pen(desMet ¹²) (2)	50.4 (34.3)	11.9 (5.4)		
MTX-Glu ₅ -Pen(desMet ¹²)	> 100	0.1 (0.1)		
MTX-Arg ₈	> 100	> 100		
MTX-Glu ₅ -Arg ₈	> 100	> 100		

MCF-7 and MDA-MB-231 cells were treated for 3 hrs at $2.56 \times 10^{-4} - 100 \mu$ M concentration range. After 3 days at 37° C, MTT-assay was carried out. (2 parallel measurements)