

Targeting by peptide conjugates

Ferenc Hudecz ^{1,2}

¹Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University,

² Department of Organic Chemistry, Institute of Chemistry, Eötvös L. University,

Paul Ehrlich 1854-1915 (Wellcome Library, London)

Rezeptoren I.Ordnung.

Rezeptoren I.Ordnung.

Unizeptoren.

Reseptoren I. Ordnung.

- Toxin mit h haptophorer Gruppe. t toxophorer
- Toxoid , h haptophorer Td
- Körperzelle. K Seitenketten.
- 8 Antitoxin. At

Rezeptoren II. Ordnung.

- Körperzelle.
- Seitenketten. 8

K

- B Bazillus. Agglutinin mit h haptoph. Gruppe.
- Ag z zymoph.
- Agd Agglutinoid " h haptoph.

Rezeptoren M.Ordnung.

Ambozeptoren.

Rezeptoren III. Ordnung.

- Körperzelle. K
- Seitenketten. 8 B

J

- Bazillus. Immunkörper mit zwei haptophoren
- Gruppen:
 - h. 1. haptophore oder sytophile, h. 2. haptophore oder komple-
 - mentophile Gruppe.
- A.J Antiimmunkörper.
- Komplement mit h haptoph. Gruppe. С e ergophorer
- Cd Komplementoid mit h haptoph. ..
- AC Antikomplement.
- Immunkörper mit mehreren komple-J, mentophilen Gruppen h, bis h.
- d.C dominantes Komplement.

Uptake and liberation of bioactive entities

Localization of intracellulae KDEL-receptor by *"*reporter molecule"-peptide conjugate

naOx - peptide conjugates

New fluorophore

Kóczán Gy. et. al. Tetrahedron 57: 4589 (2001)

New fluorophore

Kóczán Gy. et. al. Tetrahedron 57: 4589 (2001)

Fluorescent amino acids

440 λ /nm

Kóczán Gy. et. al. Tetrahedron 57: 4589 (2001)

Localization of intracellular KDEL-receptor by naOx-peptide conjugate

Permeabilization

Receptor binding of naOx-KDEL peptide conjugate

Nagy I. PhD értekezés

Uptake and liberation of bioactive entities

Branched chain polypeptides

Hudecz,F.: In: Self-assembling peptide systems in biology, medicine and engineering. (Eds.: Agelli, A., Boden, N., Zhang, S.) Kluwer Academic Publisher, The Netherlands (2001), pp. 139-160 Hudecz, F., Kóczán, Gy., Reményi, J.: In: Molecular pathomechanisms and new trends in drug research (Eds Keri, Gy. and Toth, I.) Taylor and Francis Group, London, (2003) pp. 553-578

Branched chain polypeptides

Drug-polypeptide conjugates

Drug-polypeptide conjugates

against Leishmania infection

Antileishmania effect of methotrexate conjugates

Leishmaniasis

Leishmaniasis: parasitic tropical disease

sandfly (Phlebotomus papatassi)

parasites in macrophage cell

Visceral Leishmaniasis, Sudan

Postgraduate Doctor Africa 17: 19 (1995) photo taken by R. Wilkinson

Methotrexate-polypeptide conjugates

Synthesis of methotrexate-conjugates in practice

Evaluation of methotrexate-conjugates in vitro

Kóczán Gy. et al. Bioconjugate Chem. 13: 543 (2002)

The effect of MTX-ALK conjugate in vitro

Kóczán Gy. et al. Bioconjugate Chem. 13: 543 (2002)

The effect of MTX-ALK conjugate on L. donovani infected macrophages *in vitro*

Evaluation of methotrexate-conjugates in vivo

The effect of MTX-ALK conjugate in vivo

Kóczán Gy. et al. Bioconjugate Chem. 13: 543 (2002)
Conclusions

- 1. Methotrexate preserves its antileishmania activity after conjugation with branched polypeptides.
- 2. MTX effect in vitro as well as in vivo can be increased by conjugation to branched polypeptides.
- 3. The antileishmania donovani activity of conjugates depends on the carrier polypeptide.

Fluorophor - polypeptide conjugates: structure - cellular uptake correlation?

Branched chain polypeptides

Szabó R. et al. Bioconjugate Chem. 16: 1442 (2005)

Scavenger receptor [SR-A] (+/-): bone marrow macrophages

Carrier effect: uptake of CF-polypeptides by bone marrow macrophages

(60 min)

c [µg/ml]

Szabó R. et al. Bioconjugate Chem. 16: 1442 (2005)

Uptake of CF-polypeptides by bone marrow macrophages: the role of SR-A receptor

CF-SuccEAK

Szabó R. et al. Bioconjugate Chem. 16: 1442 (2005)

Uptake of CF-polypeptides by bone marrow macrophages: inhibition of SR-A receptor by specific antibody

Szabó R. et al. Bioconjugate Chem. 16: 1442 (2005)

Uptake of CF-SuccEAK plus SR-A receptor complex

SR-A (2F8 + Cy3-antri-rat Ig6) C

CF-SuccEAK

Drug-polypeptide conjugates

Drug-polypeptide conjugates

Uptake and liberation of bioactive entities

Daunosamine directed intercalation into minor groove

[Frederick, 1990]

Daunomycin in tumour therapy

- Drug of anthracycline family
- Therapeutic use: leukaemias (AML, CML, ALL); lymphomas, rhabdomyosarcoma, neuroblastoma
- Side effects:
 - Decreased white blood cell count
 - Cardiotoxicity
 - Nausea and vomiting
 - Hair loss
- Mechanism of action:
 - intercalating DNA,
 - stabilisation DNA-topoisomerase II complex,
 - enhancing the production of free radicals

www.chemocare.com www.cincinnatichildrens.org Wang-Peng, J. et al, Cancer (2006) 23: 113-121 Laurent, G. et al, Blood. (2001) 98:913-24.

Daunomycin conjugates with oligo- or polypeptide

Branched chain polypeptides

Daunomycin-polypeptide conjugates

Hudecz, F. et. al. Bioconjugate Chem. 10: 781 (1999)

Hudecz, F. et. al. Bioconjugate Chem. 3: 49 (1992)

Toxicity of Dau and cAD-SAK polypeptide conjugate

Treatment (i.p. 1x)	Dose (mg/kg)	Dose of drug bound to polymer	Mean survival (days)	Survivors/ total	Survival (%)
Dau	1		-	7/7	100
	2		-	7/7	100
	4		-	6/7	86
	6		-	4/7	57
	8		16,0±1,7	0/7	0
	15		7,6±0,8	0/7	0
Control	-	-	-	7/7	100
cAD-SAK	180	10	-	6/6	100
Dau + SAK	6+102	6	-	2/5	40,0
SAK	102	-	-	5/5	100
Daunomyci	6	-	-	2/6	33,3
Control	-	-	-	6/6	100

Hudecz et al. J.Mol.Recognition 16: 327 (2003)

Toxicity of Dau and cAD-EAK polypeptide conjugate

Treatment (i.p. 1x)	Dose (mg/kg)	Dose of drug bound to polymer	Mean survival (days)	Survivors/t otal	Survival (%)
Dau	1	-	-	7/7	100
	2		-	7/7	100
	4		-	6/7	86
	6		-	4/7	57
	8		16.0±1.7	0/7	0
	15		7.6±0.8	0/7	0
Control	-	-	-	7/7	100
cAD-EAK	135	15	-	7/7	100
	205	22,5		7/7	100
	270	30		7/7	100
Dau + EAK	120+15	15	9.0±1.0	0/7	0
EAK	120	-	-	7/7	100

Gaál D., Hudecz, F. Eur. J. Cancer 34: 155-161 (1998)

Antitumour effect of cAD-SAK conjugate on L1210 leukemia *in vivo*

Treatment* (i.p. 1x)	Dose (mg/kg)	Daunomycin content	Mean survival (day)	T/C (%)	Survivor/ total	Survivor (%)
cAD-SAK	180	10	11,0±1,7	105	0/5	-
Daunomycin + SAK	6+102	5	20,6±5,1	180	0/5	-
SAK	170		12,4±4,9	113,6	0/5	-
Daunomycin	1 6		16,4±2,8	139	0/5	-
Control			10,6±1,9	100	0/5	-

* Treatment one day after the i.p. inoculation of 5x10⁶ L1210 cells i.p. 60-day experiment

Hudecz et al. J.Mol.Recognition 16: 327 (2003)

Antitumour effect of cAD-EAK conjugate on L1210 leukemia *in vivo*

Treatment* (i.p. 1x)	Dose (mg/kg)	Daunomycin content	Mean survival (day)	T/C (%)	Survivor/ total	Survivor (%)
cAD-EAK	45	5			4/5	80
	90	10			5/5	100
	4*18	2			3/5	60
Daunomycin + EAK	5+40		14.6±2.7	152	0/5	-
EAK	80		9.0±0.7	94	0/5	-
Daunomycin	5		13.2±2.2	138	0/5	-
	6		14.6±3.1	152	0/5	-
	10		7.8±0.8	81	0/5	_
	4*2 (qd)		13.4±2.9	140	0/5	-
Control			9,6±0,5	100	0/5	-

* Treatment one day after the i.p. inoculation of 5x10⁶ L1210 cells i.p. 60-day experiment

Gaál D., Hudecz, F. Eur. J. Cancer 34: 155-161 (1998)

Effect of cAD-EAK conjugate on mice with L1210 leukemia

Gaál D., Hudecz, F. Eur. J. Cancer 34: 155-161 (1998)

Blood clearance cAD/MTX polypeptide conjugates

Mechanism of action

Release of drug from cAD-EAK conjugates

Uptake of daunomycin and cAD-EAK conjugate by L1210 cells

Uptake of daunomycin and cAD-EAK conjugate by sensitive HL60 cells

Uptake of daunomycin by sensitive and resistant (MDR1 and MRP) HL60 cells

Uptake of cAD-EAK conjugate by sensitive and resistant (MDR1 and MRP) HL60 cells

Uptake of daunomycin and cAD-EAK conjugate by HL60/MRP1 cells (f=0.61) in the absence or presence of verapamil

Uptake of daunomycin and cAD-conjugates by sensitive tumour cells

Daunomycin "resistant" tumor cell

Daunosamine directed intercalation into minor groove

[Frederick, 1990]

Fluorescence spectra of daunomycin and cAD-EAK conjugate

Fluorescence spectra of daunomycin and cAD-EAK conjugate in the absence or presence of DNA

Time dependent localization of cAD-EAK conjugate (daunomycin: 2 μ M) in HL-60/sensitive cells (f=0.13) ^{1h} ^{3h} ^{8h} ^{24h}

Time dependent localization of daunomycin (2 μ M) (A) and cAD-EAK conjugate (daunomycin: $2 \mu M$) (B) in HL-60/sensitive cells (f=0.13)

B)

3h

24h

Localization of cAD-EAK conjugate (daunomycin: 2 μ M) in sensitive and resistant cells (incubation: 3h)

HL-60/sensitive (f=0.13)

HL-60/MDR1 (f=0.90)

HL-60/MRP1 (f=0.61)

Localization of daunomycin (2 μ M) (A) and cAD-EAK conjugate (daunomycin: 2 μ M) (B) in sensitive and resistant cells (3h)

HL-60/sensitive (f=0.13)

HL-60/MDR1 (f=0.90)

HL-60/MRP1 (f=0.61)

HL-60/MRP1 (f=0.61)

B)

A)

HL-60/sensitive (f=0.13)

HL-60/MDR1 (f=0.90)

Conclusions

- Daunomycin conjugated with polycationic (SAK) or amphoteric (EAK) polypeptide exhibit no *in vivo* toxicity in mice at 10 mg/kg dose.
- The antitumour effect of daunomycin-polypeptide conjugate depends on the nature of the polypeptide (cAD-EAK vs. cAD-SAK).
- 3. Daunomycin-peptide conjugate is effective against sensitive and MDR resistant L1210/HL60 tumour cells.
- Daunomycin-peptide conjugate is taken up by active transport (endocytosis) both in sensitive and resistant HL60 tumour cells.
- 5. Daunomycin-peptide conjugate is not a ligand of MDR/MRP proteins.

Uptake and liberation of bioactive entities

penetratin - enzyme activator

Calpains

Intracellular enzymes

Superfamily of Ca²⁺ dependent cysteine proteases

Ca²⁺ signal induced cleavage of specific proteins involved in signaling cascades

In mammals m-calpain and µ-calpain are constitutively expressed in all tissues

Calpains can be activated by different pathways

Large number of substrates

Calpastatin (complexed with calpain)

Endogenous specific inhibitor of calpains.

Protein with 110 kD.

Three highly conserved regions: A, B and C.

Region B is responsible for the inhibitory activity.

Regions A and C (Ca²⁺-binding domains) activate calpain *in vitro*.

Tompa, P. et al., J. Biol. Chem., 2002, 277, 9022-9026.

Activation of calpain *in vitro* by calpastatin fragments

Tompa, P., Hudecz, F. et al., J. Biol. Chem. 2002, 277 9022-9030.

Intracellular activation of calpain *in vitro* by calpastatin fragments in COS7 cells

>Peptides do not penetrate cells;

- Conjugation with penetratin;
- > Linkage between: amide, thioether or disulphide;
- > Labeling with fluorophores

 λ_{ex} = 320 nm, λ_{em} = 400 nm

Penetratin - calpastatin C peptide conjugates

H₂N - RQIKIWFQQNRRMKWKK-CO-NH-SKPIIGPDDAIDALSSDFTS-NH₂

Bánóczi, Z. et al. Bioconjugate Chemistry 18: 130-137 (2007)

Activation of calpastatin conjugates on isolated enzyme

Uptake of Hca-PenCalp C conjugate by COS-7 cells

Activation of calpain *in vitro* by calpastatin conjugates in COS7 cell lysate

Cell lysate treated by conjugates

 λ_g = 380 nm, λ_e = 460 nm

Calpain related - conjugates: promising tools for the analysis of calpain function

SUBSTRATE PEPTIDE

Bánóczi, Z. et al. Bioconjugate Chemistry 18: 130-137 (2007) Bánóczi, Z. et al. Bioconjugate Chemistry 19: 1378-1381 (2008)

Uptake and liberation of bioactive entities

Daunomycin conjugates with oligo- or polypeptide

Daunosamine directed intercalation into minor groove

[Frederick, 1990]

In vitro cytotoxicity and uptake of Dau=Aoa-LTVSPWY-amide conjugate

- ErbB2: overexpressed by certain cell lines (e.g. SK-BR-3)
- ErbB2: ligand: binding and internalization (e.g. breast cell lines)

<i>In vitro</i> cytotoxicity							
Cell line	IC ₅₀ ± s.d. (μM)						
	Conjugate	Dau					
HepG2	3.07 ± 0,02	0.66 ± 0.21					
HL-60	0.53 ± 0.12	0.05 ± 0,03					
MCF-7	7.42 ± 0.5	0.18 ± 0.09					
SK-BR-3	37.9 ± 2.64	3.64 ± 0.52					

Cellular uptake c = 0.8 – 100 μ M, 90 min

http://www.genenames.org

Synthesis of Dau-heptapeptide conjugate with oxime bond

Stability of of Dau=Aoa-LTVSPWY-amide conjugate with oxime bond

Analytical RP-HPLC chromatogram in 0.1 M Na citrate buffer, pH 2.5

Analytical RP-HPLC chromatogram in 0.1 M Na citrate buffer, pH 7.0

Analytical RP-HPLC chromatogram in 0.1 M Na citrate buffer, pH 5.0

Analytical RP-HPLC chromatogram after incubation in RPMI-1640 medium with 10% sera

Characteristics of Dau=Aoa-LTVSPWY-amide conjugate with oxime bond

Compaund	MS۵	D b (min)	
compound	Calc.	Calc. Measd.	
Dau=Aoc-LTVSPWY-NH ₂	1224,3	1224,3	27,0
Dau	527,5	n.a.	34,9

° SELDI-MS

^b HPLC, Column: Supelcoil LC-18-DB (C18, 120 A, 5 μ m, 4,6 x 250 mm), gradient elution: 0-5 min 5% eluent B, 5-50 min 90% eluent B, where eluent A: 0.1 % TFA in water, eluent B: 0.1% TFA in AcN-water (80-20 v/v %)

in 0.1 M Tris buffer, pH 7.4 c = 1,8 x 10⁻⁵ M (Dau) Emission spectra

λ_{ex} = 473 nm

in 0.1 M Tris buffer, pH 7.4 c = 1,8 × 10⁻⁵ M (Dau)

In vitro cytotoxicity and uptake of Dau=Aoa-LTVSPWY-amide conjugate

Stability in RPMI-1640 medium with 10% sera

http://www.genenames.org

<i>In vitro</i> cytotoxicity							
Cell line	$IC_{50} \pm s.d. (\mu M)$						
	Conjugate	Dau					
HepG2	3.07 ± 0,02	0.66 ± 0.21					
HL-60	0.53 ± 0.12	0.05 ± 0,03					
MCF-7	7.42 ± 0.5	0.18 ± 0.09					
SK-BR-3	37.9 ± 2.64	3.64 ± 0.52					

Cellular uptake c = 0.8 – 100 μ M, 90 min

Analysis of protein expression profile

Protein expression profile of non-treated (A) and Dau-treated HL-60 cells (B).

t = 24 hr

Identified proteins	Average protein expression level in			
	Controll	Dau		
Actin, cytoplasmic 1 (Beta-actin)	11178.5	1615.8		
Proliferating cell nuclear antigen (PCNA) (Cyclin)	1440.7	171.5		
Ran-specific GTPase-activating protein (Ran-binding protein 1)	789.7	1648.5		
Tubulin beta chain (Tubulin beta-5 chain)	1337.6	9713.9		

Arrows and spot numbers show the significantly different spots on the gel where expression level was higher.

Protein expression profile of non-treated (A) and Dau-treated HL-60 cells (B).

		Average	Average level in				
Identified Protein	Spot number	Control	Dau	Fold- change	Mascot score	M _r (Da)	pI
Proliferating cell nuclear antigen (PCNA) (Cyclin)	201	1440.7	171.5	0.12	2111	28768.78	4.57
Tubulin beta chain (Tubulin beta-5 chain)	1504	1337.6	9713.9	7.26	11510	49670.82	4.78
Ran-specific GTPase-activating protein (Ran- binding protein 1) (RanBP1)	2001	789.7	1648.5	2.09	560	23310.12	5.19
Actin, cytoplasmic 1 (Beta-actin)	2402	11178.5	1615.8	0.14	17877	41736.73	5.29

Spot number: for the identification on the gel.

Proteins with different expression level were identified after tryptic in-gel digestion using OrbiTrap nano-LC-MS/MS mass spectrometry and MASCOT database. Average levels of the protein: calculated by PDQuest 8.0 software.

Fold change: the ratio of the average protein expression level in the conjugate and Dau-treated samples.

 M_r : the theoretical molecular weight

pI: the theoretical isoelectric point of the identified protein.

Protein expression profile of non-treated (A) and Dau=Aoa-LTVSPWY-NH2 conjugate-treated HL-60 cells (B)

Identified proteins	Average protein expression level in		
	Control	Dau=Aoa-LTVSPWY-NH ₂	
D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95) (3-PGDH)	1067.9	526.0	
Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Muscle-type aldolase)	2105.1	999.3	
Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8)	6507.8	5.6	
Plastin-2 (L-plastin) (Lymphocyte cytosolic protein 1) (LCP-1)	482.3	1065.6	
Ran-specific GTPase-activating protein (Ran-binding protein 1)	789.7	1805.0	
Rho GDP-dissociation inhibitor 2 (Rho GDI 2) (Rho-GDI beta) (Ly-GDI)	2253.9	5.6	
Transitional endoplasmic reticulum ATPase (Valosin-containing protein) (VCP)	994.4	271.7	
Translationally-controlled tumor protein (TCTP) (p23) (Histamine-releasing factor)	1406.2	5.6	

Protein expression profile of non-treated (A) and Dau=Aoa-LTVSPWY-NH2 conjugate-treated HL-60 cells (B)

		Aver	age level in				
Identified Protein	Spot number	Control	Dau=Aoa- LTVSPWY- NH2	Fold- change	Mascot score	M _r (Da)	pI
Translationally-controlled tumor protein (TCTP) (p23) (Histamine-releasing factor) (HRF)	1002	1406.2	5.6	0.004	3665	19595.34	4.84
Rho GDP-dissociation inhibitor 2 (Rho GDI 2) (Rho- GDI beta) (Ly-GDI)	1003	2253.9	5.6	0.002	3288	22988.01	5.10
Ran-specific GTPase-activating protein (Ran-binding protein 1) (RanBP1)	2001	789.7	1805.0	2.29	560	23310.12	5.19
Transitional endoplasmic reticulum ATPase (TER ATPase) (155 Mg(2+)-ATPase p97 subunit) (Valosin- containing protein) (VCP)]	2802	994.4	271.7	0.27	2657	89321.80	5.14
Plastin-2 (L-plastin) (Lymphocyte cytosolic protein 1) (LCP-1) (LC64P)	3702	482.3	1065.6	2.21	4924	70288.39	5.29
Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8)	3802	6507.8	5.6	0.001	10972	70898.09	5.37
D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95) (3- PGDH)	6604	1067.9	526.0	0.49	4131	56650.5	6.29
Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Muscle-type aldolase) (Lung cancer antigen NY-LU-1]	8303	2105.1	999.3	0.47	1143	39420.02	8.30

Protein expression profile of Dau-treated (A) and Dau=Aoa-LTVSPWY-NH2 conjugate-treated HL-60 cells (B)

Identified proteins	Average protein expression level in			
Proliferating cell nuclear antigen (PCNA) (Cyclin	171.5	2165.8		
14-3-3 protein gamma (Protein kinase C inhibitor protein 1) (KCIP-1)	157.7	1814.0		
Tubulin beta chain (Tubulin beta-5 chain	9713.9	1981.3		

A = Dau, c = 0.024 µM

B = Dau=Aoa-LTVSPWY-NH₂ conjugate c = $9 \mu M$

Arrows and spot numbers show the significantly different spots on the gel where expression level was higher.

Protein expression profile of Dau-treated (A) and Dau=Aoa-LTVSPWY-NH2 conjugate-treated HL-60 cells (B)

		Ave	rage level in				
Identified Protein	Spot number	Dau	Dau=Aoa- LTVSPWY-NH ₂	Fold- change	Mascot score	Mr(Da)	pI
Proliferating cell nuclear antigen (PCNA) (Cyclin)	201	171.5	2165.8	12.6	2111	28768.78	4.57
14-3-3 protein gamma (Protein kinase C inhibitor protein 1) (KCIP-1)	1101	157.7	1814.0	11.5	3116	28302.59	4.80
Tubulin beta chain (Tubulin beta-5 chain)	1504	9713.9	1981.3	0.2	11510	49670.82	4.78

Spot number: for the identification on the gel.

Proteins with different expression level were identified after tryptic in-gel digestion using OrbiTrap nano-LC-MS/MS mass spectrometry and MASCOT database. Average levels of the protein: calculated by PDQuest 8.0 software.

Fold change: the ratio of the average protein expression level in the conjugate and Dau-treated samples.

 M_r : the theoretical molecular weight

pI: the theoretical isoelectric point of the identified protein.

Comparison of protein expression profiles of Dau- and Dau-peptide conjugate- and non-treated HL-60 cells: an interpretation

		Avera	ge level in		
Identified Protein	Control	Dau	Fold- change	Dau=Aoa- LTVSPWY-NH ₂	Fold- change
Proliferating cell nuclear antigen (PCNA) (Cyclin)	1440.7	171.5	0.12	2165.8	12.6
Tubulin beta chain (Tubulin beta-5 chain)	1337.6	97 <u>13.9</u>	7.26	1981.3	0.2
Ran-specific GTPase-activating protein (Ran-binding protein 1)	789.7	1648.5	2.09	No change	
Actin, cytoplasmic 1 (Beta-actin)	11178.5	1615.8	0.14	No change	
14-3-3 protein gamma (Protein kinase C inhibitor protein 1) (KCIP-1)		157.7	No change	1814.0	11.5

1. Cyclin and tubulin beta-5 are involved in both processes.

2. Ran-binding protein 1 and actin are involved in Dau action.

3. 14-3-3 protein gamma is involved in Dau-conjugate action.

Conclusions

1. The expression level of several proteins altered due to the treatment with the free drug (Dau) or its conjugate in comparison with proteins from untreated cells.

2. After treatment with Dau for 24 h, the expression levels of cytoskeletal as well as cell-cycle regulatory proteins (four) have been changed.

3. Three proteins were identified, whose expression was lower (tubulin beta chain) or markedly higher (proliferating cell nuclear antigen and protein kinase C inhibitor protein 1) after administration of HL-60 cells with Dau-peptide conjugate vs free drug. These proteins are cytoskeletal proteins or involved in signalisation or metabolism.

Conclusions

- 1. Branched polypeptide methotrexate conjugates could maintain or even enhance *in vitro* and *in vivo* anti Leishmania donovani effect as compared to free drug.
- 2. Branched polypeptide daunomycin conjugates could maintain or even enhance in vitro and in vivo anti Leishmania donovani effect as compared to free drug.
- 3. Penetratin enzyme activator/inhibitor/substrate conjugate could be utilized for the analysis the function of intracellular enzymes.
- 4. Erb2 ligand peptide daunomycin conjugate could be used to identify target proteins and identify novel pathways.

Peptide/protein conjugation based alteration of relevant biological properties

Acknowledgements

Support

Hungarian-French Intergovernmental Program (F-21/2012) Hungarian Academy of Sciences (32/2012-2016) Hungarian National Research Fund (OTKA T045634) Ministry of Education (NKFP-Medichem 047/2011) Ministry of Health (ETT)